Home > Press > UT Arlington professor to increase speed, capacity on silicon chips with novel lasers
![]() |
Weidong Zhou |
Abstract:
A UT Arlington electrical engineering professor, funded by a new National Science Foundation grant, is working to harness the power of lasers on silicon chips to increase capacity and speed in computing and communications systems.
Weidong Zhou, a professor of electrical engineering with the UT Arlington Nanotechnology Research Center, said the research will advance the use of lasers on silicon based on the breakthroughs reported by his group on printed photonic crystals membrane lasers on silicon last year in Nature Photonics. His colleague, Zhenqiang Ma at the University of Wisconsin-Madison, is collaborating on the $352,982 grant project.
Low-cost silicon chips are used to efficiently house integrated electronic circuits for information processing in a variety of computer and communications devices. Lasers, by comparison, are traditionally incorporated into compound semiconductor materials to engineer high-capacity optical networks.
Silicon photonics - a popular area of research - seeks to integrate the two.
"Lasers on silicon remain a major roadblock toward making integrated silicon photonics work," Zhou said. "Integrating light or lasers on those silicon chips has the potential to increase capacity, increase speed and lower the energy consumption of what those chips do."
Zhou's technology uses photonic crystals to route laser beams in a method that increases the efficiency of the light on the integrated circuit.
"It's like building construction vertically in New York City because there's nowhere to build horizontally," Zhou said.
The technology could eventually allow designers to place optical links on silicon chips with much less wasted material, time and effort, he said. The research has applications for optical imaging, sensing, bio-integrated electronics, signal processing and data transmission, among other uses.
Khosrow Behbehani, dean of the College of Engineering, said Zhou's work has the potential to positively affect many platforms.
"Every day, we hear about limitations of available space on the Internet, how much faster data transfer must become to remain competitive and how much energy is consumed by everyone who accesses data," Behbehani said. "Dr. Zhou's work can solve some of those challenges."
####
About UT Arlington
Zhou's research is representative of research excellence at The University of Texas at Arlington, a comprehensive research institution of more than 33,300 students in the heart of North Texas.
For more information, please click here
Contacts:
Herb Booth
Office:817-272-7075
Cell:214-546-1082
Copyright © UT Arlington
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |