Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fique fibers from Andes Mountains part of miracle solution for dye pollution, find scientists

The beaker on the left contains an indigo blue dye solution prior to treatment with modified fique fibers. The beaker on the right shows the same indigo blue solution made clear, after modified fibers degraded the dye in only five minutes.
The beaker on the left contains an indigo blue dye solution prior to treatment with modified fique fibers. The beaker on the right shows the same indigo blue solution made clear, after modified fibers degraded the dye in only five minutes.

Abstract:
A cheap and simple process using natural fibers embedded with nanoparticles can almost completely rid water of harmful textile dyes in minutes, report Cornell University and Colombian researchers who worked with native Colombian plant fibers.

Fique fibers from Andes Mountains part of miracle solution for dye pollution, find scientists

Ithaca, NY | Posted on September 30th, 2013

Dyes, such as indigo blue used to color blue jeans, threaten waterways near textile plants in South America, India and China. Such dyes are toxic, and they discolor the water, thereby reducing light to the water plants, which limits photosynthesis and lowers the oxygen in the water.

The study, published in the August issue of the journal Green Chemistry, describes a proof of principle, but the researchers are testing how effectively their method treats such endocrine-disrupting water pollutants as phenols, pesticides, antibiotics, hormones and phthalates.

"These molecules are contaminants that are very resilient to traditional water-purification processes, and we believe our biocomposite materials can be an option for their removal from waste water," said study co-author, Marianny Combariza, a researcher at Colombia's Universidad Industrial de Santander.

The research takes advantage of nano-sized cavities found in cellulose that co-author Juan Hinestroza, Cornell associate professor of fiber science, has previously used to produce nanoparticles inside cotton fibers.

The paper describes the method: Colombian fique plant fibers, commonly used to make coffee bags, are immersed in a solution of sodium permanganate and then treated with ultrasound; as a result, manganese oxide molecules grow in the tiny cellulose cavities. Manganese oxides in the fibers react with the dyes and break them down into non-colored forms.

In the study, the treated fibers removed 99 percent of the dye from water within minutes. Furthermore, the same fibers can be used repeatedly -- after eight cycles, the fibers still removed between 97 percent and 99 percent of the dye.

"No expensive or particular starting materials are needed to synthesize the biocomposite," said Combariza. "The synthesis can be performed in a basic chemistry lab."

"This is the first evidence of the effectiveness of this simple technique," said Hinestroza. "It uses water-based chemistry, and it is easily transferable to real-world situations."

The researchers are testing their process on other types of pollutants, other fibers and composite materials. "We are working now on developing a low-cost filtering unit prototype to treat polluted waters," said Combariza. "We are not only focused on manganese oxides, we also work on a variety of materials based on transition metal oxides that show exceptional degradation activity."

###

Doctoral candidate Martha Chacón-Patiño is the paper's lead author, and chemistry professor Cristian Blanco-Tirado is a co-author, both at Universidad Industrial de Santander.

The study, "Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation," was funded by COLCIENCIAS, the World Bank, the vice chancellor's office of the Universidad Industrial de Santander, as well as Cornell's Mario Einaudi Center for International Studies and Cornell University Agricultural Experiment Station Hatch Funds.

####

For more information, please click here

Contacts:
Syl Kacapyr

607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Environment

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project