Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Size matters in nanocrystals' ability to adsorb/release gases

These are palladium nanocrystals.

Credit: Bardhan Laboratory
These are palladium nanocrystals.

Credit: Bardhan Laboratory

Abstract:
More efficient catalytic converters on autos, improved batteries and more sensitive gas sensors are some of the potential benefits of a new system that can directly measure the manner in which nanocrystals adsorb and release hydrogen and other gases.

Size matters in nanocrystals' ability to adsorb/release gases

Nashville, TN | Posted on August 8th, 2013

The technique, which was developed by Vanderbilt University Assistant Professor of Chemical and Biomolecular Engineering Rizia Bardhan, is described in a paper published online Aug. 4 by the journal Nature Materials.

In the last 30 years, there has been a tremendous amount of research studying nanocrystals - tiny crystals sized between one to 100 nanometers in size (a nanometer is to an inch what an inch is to 400 miles) - because of the expectation that they have unique physical and chemical properties that can be used in a broad range of applications.

One class of applications depends on nanocrystals' ability to grab specific molecules and particles out the air, hold on to them and then release them: a process called adsorption and desorption. Progress in this area has been hindered by limitations in existing methods for measuring the physical and chemical changes that take place in individual nanocrystals during the process. As a result, advances have been achieved by trial-and-error and have been limited to engineered samples and specific geometries.

"Our technique is simple, direct and uses off-the shelf instruments so other researchers should have no difficulty using it," said Bardhan. Collaborators in the development were Vanderbilt Assistant Professor of Mechanical Engineering Cary Pint, Ali Javey from the University of California, Berkeley and Lester Hedges, Stephen Whitelam and Jeffrey Urban from the Lawrence Berkeley National Laboratory.

The method is based on a standard procedure called fluorescence spectroscopy. A laser beam is focused on the target nanocrystals, causing them to fluoresce. As the nanocrystals adsorb the gas molecules, the strength of their fluorescent dims and as they release the gas molecules, it recovers.

"The fluorescence effect is very subtle and very sensitive to differences in nanocrystal size," she explained. "To see it you must use nanocrystals that are uniform in size." That is one reason why the effect wasn't observed before: Fabrication techniques such as ball milling and other wet-chemical approaches that have been widely used produce nanocrystals in a range of different sizes. These differences are enough to mask the effect.

To test their technique, the researchers studied hydrogen gas sensing with nanocrystals made out of palladium. They choose palladium because it is very stable and it readily releases adsorbed hydrogen. They used hydrogen because of the interest in using it as a replacement for gasoline. One of the major technical obstacles to this scenario is developing a safe and cost-effective storage method. A nanocrystal-based metal hydride system is one of the promising approaches under development.

The measurements they made revealed that the size of the nanocrystals have a much stronger effect on the rate that the material can adsorb and release hydrogen and the amount of hydrogen that the material can absorb than previously expected - all key properties for a hydrogen storage system. The smaller the particle size, the faster the material can absorb the gas, the more gas it can absorb and faster it can release it.

"In the past, people thought that the size effect was limited to sizes less than 15 to 20 nanometers, but we found that it extends up to 100 nanometers," said Bardhan.

The researchers also determined that the adsorption/desorption rate was determined by just three factors: pressure, temperature and nanocrystal size. They did not find that additional factors such as defects and strain had a significant effect as previously suggested. Based on this new information, they created a simple computer simulation that can predict the adsorption/desorption rates of various types and size ranges of nanocrystals with a variety of different gases.

"This makes it possible to optimize a wide range of nanocrystal applications, including hydrogen storage systems, catalytic converters, batteries, fuel cells and supercapacitors," Bardhan said.

The research was funded by Department of Energy grants KC0202020 and AC02-05CH11231.

####

For more information, please click here

Contacts:
David F. Salisbury

615-343-6803

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project