Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecular robots can help researchers build more targeted therapeutics: Study demonstrates technique to create better anti-cancer agents, arthritis drugs, and more

"This is a proof of concept study using human cells," said Sergei Rudchenko, Ph.D., director of flow cytometry at Hospital for Special Surgery in New York City and a senior author of the study.

Credit: Hospital for Special Surgery
"This is a proof of concept study using human cells," said Sergei Rudchenko, Ph.D., director of flow cytometry at Hospital for Special Surgery in New York City and a senior author of the study.

Credit: Hospital for Special Surgery

Abstract:
Many drugs such as agents for cancer or autoimmune diseases have nasty side effects because while they kill disease-causing cells, they also affect healthy cells. Now a new study has demonstrated a technique for developing more targeted drugs, by using molecular "robots" to hone in on more specific populations of cells.

Molecular robots can help researchers build more targeted therapeutics: Study demonstrates technique to create better anti-cancer agents, arthritis drugs, and more

New York, NY | Posted on July 28th, 2013

"This is a proof of concept study using human cells," said Sergei Rudchenko, Ph.D., director of flow cytometry at Hospital for Special Surgery (HSS) in New York City and a senior author of the study. "The next step is to conduct tests in a mouse model of leukemia." The study, a collaboration between researchers from HSS and Columbia University, is in Advance Online Publication on the website of Nature Nanotechnology.

All cells have many receptors on their cell surface. When antibodies or drugs bind to a receptor, a cell is triggered to perform a certain function or behave in a certain manner. Drugs can target disease-causing cells by binding to a receptor, but in some cases, disease-causing cells do not have unique receptors and therefore drugs also bind to healthy cells and cause "off-target" side effects.

Rituximab (Rituxan, Genentech), for example, is used to treat rheumatoid arthritis, non-Hodgkin's lymphoma and chronic lymphocytic leukemia by docking on CD20 receptors of aberrant cells that are causing the diseases. However, certain immune cells also have CD20 receptors and thus the drug can interfere with a person's ability to mount a fight against infection.

In the new study, scientists have designed molecular robots that can identify multiple receptors on cell surfaces, thereby effectively labeling more specific subpopulations of cells. The molecular robots, called molecular automata, are composed of a mixture of antibodies and short strands of DNA. These short DNA strands, otherwise called oligonucleotides, can be manufactured by researchers in a laboratory with any user-specified sequence.

The researchers conducted their experiments using white blood cells. All white blood cells have CD45 receptors, but only subsets have other receptors such as CD20, CD3, and CD8. In one experiment, HSS researchers created three different molecular robots. Each one had an antibody component of either CD45, CD3 or CD8 and a DNA component. The DNA components of the robots were created to have a high affinity to the DNA components of another robot. DNA can be thought of as a double stranded helix that contains two strands of coded letters, and certain strands have a higher affinity to particular strands than others.

The researchers mixed human blood from healthy donors with their molecular robots. When a molecular robot carrying a CD45 antibody latched on to a CD45 receptor of a cell and a molecular robot carrying a CD3 antibody latched on to a different welcoming receptor of the same cell, the close proximity of the DNA strands from the two robots triggered a cascade reaction, where certain strands were ripped apart and more complementary strands joined together. The result was a unique, single strand of DNA that was displayed only on a cell that had these two receptors.

The addition of a molecular robot carrying a CD8 antibody docking on a cell that expressed CD45, CD3 and CD8 caused this strand to grow. The researchers also showed that the strand could be programmed to fluoresce when exposed to a solution. The robots can essentially label a subpopulation of cells allowing for more targeted therapy. The researchers say the use of increasing numbers of molecular robots will allow researchers to zero in on more and more specific subsets of cell populations. In computer programming language, the molecular robots are performing what is known as an "if yes, then proceed to X function."

"The automata trigger the growth of more strongly complementary oligonucleotides. The reactions occur fast. In about 15 minutes, we can label cells," said Maria Rudchenko, M.S., the first author of the paper and a research associate at Hospital for Special Surgery. In terms of clinical applications, researchers could either label cells that they want to target or cells they want to avoid.

"This is a proof of concept study that it works in human whole blood," said Dr. Rudchenko. "The next step is to test it in animals."

If molecular robots work in studies with mice and eventually human clinical trials, the researches say there are a wide range of possible clinical applications. For example, cancer patients could benefit from more targeted chemotherapeutics. Drugs for autoimmune diseases could be more specifically tailored to impact disease-causing autoimmune cells and not the immune cells that people need to fight infection.

The study was funded, in part, by the National Institutes of Health, National Science Foundation, and the Lymphoma and Leukemia Foundation.

Other researchers involved with the study are Alesia Dechkovskaia from Hospital for Special Surgery, and Steven Taylor, Ph.D., Payal Pallavi, B.A., Safana Khan, Vincent Butler, M.D., and Milan Stojanovic, Ph.D., from Columbia University. Dr. Stojanovich is also a senior author.

####

About Hospital for Special Surgery
Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 4 in rheumatology and No. 5 in geriatrics by U.S. News & World Report (2013-14), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2012, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the New York-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City.

For more information, please click here

Contacts:
Phyllis Fisher

212-606-1724

Copyright © Hospital for Special Surgery

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project