Home > Press > Bacterial spare parts filter antibiotic residue from groundwater
Abstract:
Researchers at University of Cincinnati have developed and tested a solar-powered nano filter that is able to remove harmful carcinogens and antibiotics from water sources - lakes and rivers - at a significantly higher rate than the currently used filtering technology made of activated carbon. They report their results today at the 113th General Meeting of the American Society for Microbiology.
Vikram Kapoor, environmental engineering doctoral student, and David Wendell, assistant professor of environmental engineering, report on their development and testing of the new filter made of two bacterial proteins that was able to absorb 64 percent of antibiotics in surface waters vs. about 40 percent absorbed by the currently used filtering technology made of activated carbon. One of the more exciting aspects of this filter is the ability to reuse the antibiotics that are captured.
"The presence of antibiotics in surface waters is harmful in that it breeds resistant bacteria and kills helpful microorganisms, which can degrade aquatic environments and food chains. In other words, infectious agents like viruses and illness-causing bacteria become more numerous while the health of streams and lakes degrades," says Kapoor.
The newly developed nano filters, each much smaller in diameter than a human hair, could potentially have a big impact on both human health and on the health of the aquatic environment (since the presence of antibiotics in surface waters can also affect the endocrine systems of fish, birds and other wildlife).
The filter employs one of the very elements that enable drug-resistant bacteria to be so harmful, a protein pump called AcrB.
"These pumps are an amazing product of evolution. They are essentially selective garbage disposals for the bacteria. Our innovation was turning the disposal system around. So, instead of pumping out, we pump the compounds into the proteovesicles," says Kapoor
The operation of the new filtering technology is powered by direct sunlight vs. the energy-intensive needs for the operation of the standard activated carbon filter.
The filtering technology also allows for antibiotic recycling.
"After these new nano filters have absorbed antibiotics from surface waters, the filters could be extracted from the water and processed to release the drugs, allowing them to be reused. On the other hand, carbon filters are regenerated by heating to several hundred degrees, which burns off the antibiotics," says Kapoor.
The new protein filters are highly selective. Currently used activated carbon filters serve as "catch alls," filtering a wide variety of contaminants. That means that they become clogged more quickly with natural organic matter found in rivers and lakes.
"So far, our innovation promises to be an environmentally friendly means for extracting antibiotics from the surface waters that we all rely on. It also has potential to provide for cost-effective antibiotic recovery and reuse," says Kapoor.
The researchers have tested the solar-powered nano filter against activated carbon, the present treatment technology standard outside the lab, in water collected from the Little Miami River. Using only sunlight as the power source, they were able to selectively remove the antibiotics ampicillin and vancomycin, commonly used human and veterinary antibiotics, and the nucleic acid stain, ethidium bromide, which is a potent carcinogen to humans and aquatic animals.
This research was presented as part of the 2013 General Meeting of the American Society for Microbiology held May 18-21, 2013 in Denver, Colorado. A full press kit for the meeting, including tipsheets and additional press releases, can be found online at bit.ly/asm2013pk.
####
About American Society for Microbiology
The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.
For more information, please click here
Contacts:
Jim Sliwa
202-942-9297
Copyright © American Society for Microbiology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Water
Taking salt out of the water equation October 7th, 2022
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||