Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > HELIOS Program Develops Complete Supply Chain for Integrating Photonics with CMOS Circuit via IC Fabrication Processes

Abstract:
CEA-Leti said today that Europe is strongly positioned to design and manufacture volume silicon photonics devices because of the success of the recently completed HELIOS program. The €8.5 million European Commission project developed a complete design and fabrication supply chain for integrating a photonic layer with a CMOS circuit, using microelectronics fabrication processes.

HELIOS Program Develops Complete Supply Chain for Integrating Photonics with CMOS Circuit via IC Fabrication Processes

Grenoble, France | Posted on May 14th, 2013

HELIOS, which was coordinated by Leti, also demonstrated a complete design flow, integrating both silicon photonics device design and electronic/photonic system design in an EDA-compatible framework (see www.helios-project.eu)

"It is strategically important for Europe to maintain photonic chip-design and chip-integrating functions to compete with other countries and to encourage innovation by European microelectronics companies," said Leti CEO Laurent Malier. "HELIOS's success in creating the essential building blocks for integrating photonics with CMOS circuits and making the process available to a variety of users underscores the key role that broad European technological cooperation plays in a very competitive global business environment."

Thomas Skordas, head of the EC's photonics unit, said HELIOS has shown the large potential silicon photonics has in many different applications, such as data communications.

"The technology roadmap of silicon photonics becomes clearer now. Europe will have to move fast to become competitive in this new field," Skordas said. "Strategies for the industrialisation of silicon photonics are currently being discussed in the context of Horizon 2020, the EU's new framework program for research and innovation for 2014-2020."

Silicon photonics is seen as key to developing optical telecommunications or for optical interconnects in microelectronic circuits, because of the cost advantages of integrating photonic and electronic functions on the same chip. CMOS photonics may lead to low-cost solutions for a range of applications such as optical communications, optical interconnections between semiconductor chips and circuit boards, optical signal processing, optical sensing, and biological applications.

Launched by the European Commission in 2008, HELIOS focused on developing essential building blocks like efficient optical sources (silicon-based and heterogeneous integration of III-V on silicon), integrated lasers, high-speed modulators and photo-detectors. The project, which had 20 members, also combined and packaged these building blocks to demonstrate complex functions that address a variety of industrial needs.

These include a 10Gb/s modulator integrated with an electronic BiCMOS driver, a 16x10 Gb/s transceiver for WDM-PON applications, a photonic QAM-10Gb/s wireless transmission system and a mixed analog-and-digital transceiver module for multi-function antennas.

The building blocks also led to results exceeding the original specifications, positioning the partners at the leading edge in their fields:

· High-performance passive devices were obtained and introduced in the demonstrators (rib/strip waveguides transitions with less than 0.2dB losses, grating couplers with 1.6dB losses, inverted taper couplers with 1dB losses, AWG and micro-ring based de-multiplexers).

· The wafer-level integration of laser by III-V/Si bonding led to the demonstration of single-mode operation with 3dBm output power, 30dB SMSR, Ith < 35mA in CW.

· 40G carrier depletion Si modulators were demonstrated in MZI, Ring, slow wave, interdigitated modulators configuration.

· An integrated tunable laser-Mach-Zehnder modulator working at 10Gb/s.

The work of the HELIOS consortium led to more than 170 publications and communications in peer-review journals and international conferences. Detailed information is available on www.helios-project.eu

HELIOS program members:

- CEA-Leti, coordinator (France)

- IMEC (Belgium)

- CNRS (France)

- Alcatel Thales III-V lab (France)

- University of Surrey (UK)

- IMM (Italy)

- University of Paris-Sud (France)

- University of Valencia (Spain)

- University of Trento (Italy)

- University of Barcelona (Spain)

- 3S Photonics (France)

- IHP (Germany)

- University of Berlin (Germany)

- Thales (France)

- DAS Photonics (Spain)

- ams AG (Austria)

- University of Vienna (Austria)

- Phoenix BV (Netherlands)

- Photline Technologies (France)

- University of Southampton (UK)

####

About CEA-Leti
Leti is an institute of CEA, a French research-and-technology organization with activities in energy, IT, healthcare, defence and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics. NEMS and MEMS are at the core of its activities. An anchor of the MINATEC campus, CEA-Leti operates 8,000-m² of state-of-the-art clean room space on 200mm and 300mm wafer platforms. It employs 1,700 scientists and engineers including 320 Ph.D. students and 200 assignees from partner companies. CEA-Leti owns more than 2,200 patent families.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02.26


Agency
+33 1 70 29 08 59

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project