Home > Press > New research findings open door to zinc-oxide-based UV lasers, LED devices
Abstract:
"Shallow acceptor complexes in p-type ZnO"
Authors: J.G. Reynolds, C. L. Reynolds, Jr., J.F. Muth, J.E. Rowe and D.E. Aspnes, North Carolina State University; A. Mohanta and H.O. Everitt, U.S. Army Aviation & Missile Research, Development & Engineering Center
Published: April 19, 2013, Applied Physics Letters
Abstract: We show that N-doped ZnO films grown on sapphire can exhibit significant (~1018 cm-3) room-temperature p-type behavior when sufficient nitrogen (N) is incorporated and the material is annealed appropriately. Substitutional N on the oxygen (O) sublattice is a deep acceptor; however, shallow acceptor complexes involve N, H and zinc vacancies (VZn). Combining secondary ion mass spectrometry, Raman-scattering, photoluminescence, and Hall-effect data, we establish the evolution of N from its initial incorporation on a Zn site to a final shallow acceptor complex VZn_NO_H+ with an ionization energy of ca. 130 meV. This complex is responsible for the observed p-type behavior.
Researchers from North Carolina State University have solved a long-standing materials science problem, making it possible to create new semiconductor devices using zinc oxide (ZnO) - including efficient ultraviolet (UV) lasers and LED devices for use in sensors and drinking water treatment, as well as new ferromagnetic devices.
"The challenge of using ZnO to make these devices has stumped researchers for a long time, and we've developed a solution that uses some very common elements: nitrogen, hydrogen and oxygen," says Dr. Lew Reynolds, co-author of a paper describing the research and a teaching associate professor of materials science and engineering at NC State. "We've shown that it can be done, and how it can be done - and that opens the door to a suite of new UV laser and LED technologies," says Dr. Judith Reynolds, a research scientist at NC State and lead author of the paper.
To make laser and LED technologies, you need both "n-type" materials and "p-type" materials. N-type materials contain an abundance of free electrons. P-type materials have "holes" that attract those free electrons. But the holes in the p-type materials have a lower energy state, which means that electrons release their excess energy in the form of light as they travel from the n-type material to the p-type material. The shedding of excess energy at the so-called "p-n junction" is what produces light in lasers and LED devices.
Researchers have been interested in using ZnO to create these devices because ZnO produces UV light, and because ZnO can be used to make devices with relatively fewer unwanted defects than other UV emitters- which means the resulting lasers or LEDs would be more energy efficient.
However, researchers had been unable to consistently produce stable p-type materials out of ZnO. Now researchers have solved that problem by introducing a specific "defect complex," via a unique set of growth and annealing procedures, in the ZnO. The defect complex looks different from a normal ZnO molecule. The zinc atom is missing and a nitrogen atom (attached to a hydrogen atom) substitutes for the oxygen atom. These defect complexes are dispersed throughout the ZnO material and serve as the "holes" that accept the electrons in p-type materials.
Not only does the research illustrate how to create p-type materials from ZnO, but the defect complex allows the ZnO p-n junction to function efficiently - and produce UV light - at room temperature.
The paper, "Shallow acceptor complexes in p-type ZnO, " is published online in Applied Physics Letters. Lead author of the paper is Dr. Judith Reynolds, a research scientist at NC State. Co-authors include Drs. A. Mohanta and H.O. Everitt of the U.S. Army Aviation & Missile Research, Development & Engineering Center; Dr. John Muth, a professor of electrical and computer engineering at NC State; Dr. John Rowe, a research professor of physics at NC State; and Dr. David Aspnes, Distinguished University Professor of Physics at NC State. The research was supported by the Defense Advanced Research Projects Agency.
####
For more information, please click here
Contacts:
Matt Shipman
919-515-6386
Dr. Lewis Reynolds
919.515.7622
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Materials/Metamaterials/Magnetoresistance
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Water
Taking salt out of the water equation October 7th, 2022
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |