Home > Press > Quantum computing taps nucleus of single atom: Australian engineers from UNSW have created a functional quantum bit based on the nucleus of a single atom in silicon
![]() |
This is, from left: Scientia Professor Andrew Dzurak, Ph.D. Student Jarryd Pla (lead experimental author) and Associate Professor Andrea Morello, University of New South Wales. All three are engineers in the School of Electrical Engineering and Telecommunications at the University of New South Wales in Sydney, Australia.
Credit: University of New South Wales |
Abstract:
A team of Australian engineers at the University of New South Wales (UNSW) has demonstrated a quantum bit based on the nucleus of a single atom in silicon, promising dramatic improvements for data processing in ultra-powerful quantum computers of the future.
Quantum bits, or qubits, are the building blocks of quantum computers, which will offer enormous advantages for searching expansive databases, cracking modern encryption, and modelling atomic-scale systems such as biological molecules and drugs.
The world-first result, to be published in Nature on April 18, brings these machines one-step closer, describing how information was stored and retrieved using the magnetic spin of a nucleus.
"We have adapted magnetic resonance technology, commonly known for its application in chemical analysis and MRI scans, to control and read-out the nuclear spin of a single atom in real time," says Associate Professor Andrea Morello from the School of Electrical Engineering and Telecommunications at UNSW.
The nucleus of a phosphorus atom is an extremely weak magnet, which can point along two natural directions, either "up" or "down". In the strange quantum world, the magnet can exist in both states simultaneously - a feature known as quantum superposition.
The natural positions are equivalent to the "zero" and "one" of a binary code, as used in existing classical computers. In this experiment, the researchers controlled the direction of the nucleus, in effect "writing" a value onto its spin, and then "reading" the value out - turning the nucleus into a functioning qubit.
"We achieved a read-out fidelity of 99.8 per cent, which sets a new benchmark for qubit accuracy in solid-state devices," says UNSW Scientia Professor Andrew Dzurak, who is also Director of the Australian National Fabrication Facility at UNSW, where the devices were made.
The accuracy of the UNSW team's nuclear spin qubit rivals what many consider to be today's best quantum bit - a single atom in an electromagnetic trap inside a vacuum chamber. The development of this "Ion Trap" technology was awarded the 2012 Nobel Prize in physics.
"Our nuclear spin qubit operates at a similar level of accuracy, but it's not in a vacuum chamber - it's in a silicon chip that can be wired up and operated electrically like normal integrated circuits," says Morello. "Silicon is the dominant material in the microelectronics industry, which means our qubit is more compatible with existing industry technology and is more easily scaleable."
Morello's PhD student Jarryd Pla is the lead experimental author of the work, which was conducted in collaboration with the groups led by Dzurak and Professor David Jamieson at the University of Melbourne. Morello, Dzurak and Jamieson are all Program Managers in the ARC Centre of Excellence for Quantum Computation and Communication Technology.
In September 2012, the same UNSW team reported in Nature the first functional quantum bit based on an electron bound to a phosphorus atom embedded in silicon, "writing" information onto its spin and then "reading" the spin state back out.
With their latest result, the team has dug even deeper into the atomic structure to manipulate and measure the spin of its nucleus. This is the core of an atom, containing most of its mass, but its diameter is only about one-millionth that of the atom's diameter.
"This means it's more challenging to measure, but it's almost completely immune to disturbances from the outside world, which makes it an exceptional quantum bit," says UNSW engineering PhD student Jarryd Pla. "Our nuclear spin qubit can store information for longer times and with greater accuracy. This will greatly enhance our ability to carry out complex quantum calculations once we put many of these qubits together."
Electron spin qubits will likely act as the main "processor" bits for quantum computers of the future, coupled with other electrons to perform calculations. But nuclear spin qubits could also be integrated and could provide a useful memory function or help implement two-bit logic gates between the electronic qubits, the researchers say.
Demonstrating quantum memories and two-qubit logic gates is the main focus of the UNSW team for the near future. They are also exploring ways of improving the accuracy of their nuclear and electron spin qubits even further, by moving to a purer form of silicon.
####
For more information, please click here
Contacts:
Myles Gough
61-293-851-933
Associate Professor Andrea Morello
Scientia Professor Andrew Dzurak
+61-4-3240-5434
Copyright © University of New South Wales
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Quantum Computing
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Programmable electron-induced color router array May 14th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |