Home > News > Combining Nanowires and Memristors Could Lead to Brain-like Computing
April 4th, 2013
Combining Nanowires and Memristors Could Lead to Brain-like Computing
Abstract:
For decades now, researchers have been trying to get computers to behave like artificial brains instead of merely binary data crunchers. One of the obstacles in creating this capability has been that computers are based on silicon CMOS chips rather than the dendrites and synapses found in the human brain. One of the drawbacks with silicon chips is that they lack what is known as "plasticity" in which the brain's neurons adapt in order to learn and remember.
To overcome such limitations, nanotechnology has been offering alternatives to silicon chip architecture that will more closely resemble the human brain. DARPA's SyNAPSE project is one example.
Now researchers at the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) at Trinity College in Dublin are pursuing a new nanomaterial-based approach to neural networks that combines work in nanowires and memristors. The aim of the project, for which the researchers have just received a €2.5 million research grant from the European Research Council (ERC), is to develop a new computing paradigm that mimics the neural networks of the human brain. A video describing the CRANN research can be seen below.
Source:
spectrum.ieee.org
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Brain-Computer Interfaces
Taking salt out of the water equation October 7th, 2022
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Blog sites
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016
Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016
Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Artificial Intelligence
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||