Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously

The positioning of individual molecules on a material’s surface is carried out using a scanning tunnelling microscope. The tip of the probe emits an electrical impulse to deposit a molecule it is carrying.

Credit
Bernhard Ramsauer - TU Graz
The positioning of individual molecules on a material’s surface is carried out using a scanning tunnelling microscope. The tip of the probe emits an electrical impulse to deposit a molecule it is carrying. Credit Bernhard Ramsauer - TU Graz

Abstract:
The chemical composition of a material alone sometimes reveals little about its properties. The decisive factor is often the arrangement of the molecules in the atomic lattice structure or on the surface of the material. Materials science utilises this factor to create certain properties by applying individual atoms and molecules to surfaces with the aid of high-performance microscopes. This is still extremely time-consuming and the constructed nanostructures are comparatively simple. Using artificial intelligence, a new research group at TU Graz now wants to take the construction of nanostructures to a new level: “We want to develop a self-learning AI system that positions individual molecules quickly, specifically and in the right orientation, and all this completely autonomously,” says Oliver Hofmann from the Institute of Solid State Physics, who heads the research group. This should make it possible to build highly complex molecular structures, including logic circuits in the nanometre range. The “Molecule arrangement through artificial intelligence” research group is receiving funding totalling 1.19 million euros from the Austrian Science Fund.

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously

Styria, Austria | Posted on January 17th, 2025

Positioning using a scanning tunnelling microscope

The positioning of individual molecules on a material’s surface is carried out using a scanning tunnelling microscope. The tip of the probe emits an electrical impulse to deposit a molecule it is carrying. “A person needs a few minutes to complete this step for a simple molecule,” says Oliver Hofmann. “But in order to build complicated structures with potentially exciting effects, many thousands of complex molecules have to be positioned individually and the result then tested. This of course takes a relatively long time.”

However, a scanning tunnelling microscope can also be controlled by a computer. Oliver Hofmann’s team now wants to use various machine learning methods to get such a computer system to place the molecules in the correct position independently. First, AI methods are used to calculate an optimal plan that describes the most efficient and reliable approach to building the structure. Self-learning AI algorithms then control the probe tip to place the molecules precisely according to the plan. “Positioning complex molecules at the highest precision is a difficult process, as their alignment is always subject to a certain degree of chance despite the best possible control,” explains Hofmann. The researchers will integrate this conditional probability factor into the AI system so that it still acts reliably.

Nanostructures in the shape of a gate

Using an AI-controlled scanning tunnelling microscope that can work around the clock, the researchers ultimately want to build so-called quantum corrals. These are nanostructures in the shape of a gate, which can be used to trap electrons from the material on which they are deposited. The wave-like properties of the electrons then lead to quantum-mechanical interferences that can be utilised for practical applications. Until now, quantum corrals have mainly been built from single atoms. Oliver Hofmann’s team now wants to produce them from complex-shaped molecules: “Our hypothesis is that this will allow us to build much more diverse quantum corrals and thus specifically expand their effects.” The researchers want to use these more complex quantum corrals to build logic circuits in order to fundamentally study how they work at the molecular level. Theoretically, such quantum corrals could one day be used to build computer chips.

Expertise from two universities

For its five-year programme, the research group is pooling expertise from the fields of artificial intelligence, mathematics, physics and chemistry. Bettina Könighofer from the Institute of Information Security is responsible for the development of the machine learning model. Her team must ensure that the self-learning system does not inadvertently destroy the nanostructures it constructs. Jussi Behrndt from the Institute of Applied Mathematics will determine the fundamental properties of the structures to be developed on a theoretical basis, while Markus Aichhorn from the Institute of Theoretical Physics will translate these predictions into practical applications. Leonhard Grill from the Institute of Chemistry at the University of Graz is primarily responsible for the real experiments on the scanning tunnelling microscope.

####

For more information, please click here

Contacts:
Media Contact

Philipp Jarke
Graz University of Technology

Office: +43 316 873 4566

Expert Contact

Oliver Hofmann
Graz University of Technology | Institute of Solid State Physics

Office: +43 316 873 8964

Copyright © Graz University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Title

Related News Press

Nanofabrication

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Artificial Intelligence

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project