Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Surprising Control over Photoelectrons from a Topological Insulator: Berkeley Lab scientists discover how a photon beam can flip the spin polarization of electrons emitted from an exciting new material

The interior bulk of a topological insulator is indeed an insulator, but electrons (spheres) move swiftly on the surface as if through a metal. They are spin-polarized, however, with their momenta (directional ribbons) and spins (arrows) locked together. Berkeley Lab researchers have discovered that the spin polarization of photoelectrons (arrowed sphere at upper right) emitted when the material is struck with high-energy photons (blue-green waves from left) is completely determined by the polarization of this incident light. (Image Chris Jozwiak, Zina Deretsky, and Berkeley Lab Creative Services Office)
The interior bulk of a topological insulator is indeed an insulator, but electrons (spheres) move swiftly on the surface as if through a metal. They are spin-polarized, however, with their momenta (directional ribbons) and spins (arrows) locked together. Berkeley Lab researchers have discovered that the spin polarization of photoelectrons (arrowed sphere at upper right) emitted when the material is struck with high-energy photons (blue-green waves from left) is completely determined by the polarization of this incident light.

(Image Chris Jozwiak, Zina Deretsky, and Berkeley Lab Creative Services Office)

Abstract:
Plain-looking but inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. Even at room temperature, a single chunk of TI is a good insulator in the bulk, yet behaves like a metal on its surface.

Surprising Control over Photoelectrons from a Topological Insulator: Berkeley Lab scientists discover how a photon beam can flip the spin polarization of electrons emitted from an exciting new material

Berkeley, CA | Posted on March 13th, 2013

Researchers find TIs exciting partly because the electrons that flow swiftly across their surfaces are "spin polarized": the electron's spin is locked to its momentum, perpendicular to the direction of travel. These interesting electronic states promise many uses - some exotic, like observing never-before-seen fundamental particles, but many practical, including building more versatile and efficient high-tech gadgets, or, further into the future, platforms for quantum computing.

A team of researchers from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley has just widened the vista of possibilities with an unexpected discovery about TIs: when hit with a laser beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light.

"The first time I saw this it was a shock; it was such a large effect and was counter to what most researchers had assumed about photoemission from topological insulators, or any other material," says Chris Jozwiak of Berkeley Lab's Advanced Light Source (ALS), who worked on the experiment. "Being able to control the interaction of polarized light and photoelectron spin opens a playground of possibilities."

The Berkeley Lab-UC Berkeley team was led by Alessandra Lanzara of Berkeley Lab's Materials Sciences Division (MSD) and UC Berkeley's Department of Physics, working in collaboration with Jozwiak and Zahid Hussain of the ALS; Robert Birgeneau, Dung-Hai Lee, and Steve Louie of MSD and UC Berkeley; and Cheol-Hwan Park of UC Berkeley and Seoul National University. They and their colleagues report their findings in Nature Physics.

Strange electronic states and how to measure them

In diagrams of what physicists call momentum space, a TI's electronic states look eerily like the same kinds of diagrams for graphene, the single sheet of carbon atoms that, before topological insulators came along, was the hottest topic in the materials science world.

In energy-momentum diagrams of graphene and TIs, the conduction bands (where energetic electrons move freely) and valence bands (where lower-energy electrons are confined to atoms) don't overlap as they do in metals, nor is there an energy gap between the bands, as in insulators and semiconductors. Instead the "bands" appear as cones that meet at a point, called the Dirac point, across which energy varies continuously.

The experimental technique that directly maps these states is ARPES, angle-resolved photoemission spectroscopy. When energetic photons from a synchrotron light source or laser strike a material, it emits electrons whose own energy and momentum are determined by the material's distribution of electronic states. Steered by the spectrometer onto a detector, these photoelectrons provide a picture of the momentum-space diagram of the material's electronic structure.

Similar as their Dirac-cone diagrams may appear, the electronic states on the surface of TIs and in graphene are fundamentally different: those in graphene are not spin polarized, while those of TIs are completely spin polarized, and in a peculiar way.

A slice through the Dirac-cone diagram produces a circular contour. In TIs, spin orientation changes continuously around the circle, from up to down and back again, and the locked-in spin of surface electrons is determined by where they lie on the circle. Scientists call this relation of momentum and spin the "helical spin texture" of a TI's surface electrons. (Electron spin isn't like that of a spinning top, however; it's a quantum number representing an intrinsic amount of angular momentum.)

Directly measuring the electrons' spin as well as their energy and momentum requires an addition to ARPES instrumentation. Spin polarization is hard to detect and in the past has been established by firing high-energy electrons at gold foil and counting which way a few of them bounce; collecting the data takes a long time.

Jozwiak, Lanzara, and Hussain jointly led the development of a precision detector that could measure the spin of low-energy photoelectrons by measuring how they scatter from a magnetic surface. Called a spin time-of-flight analyzer, the device is many times more efficient at data collection.

Says Hussain, "It's the kind of project that could only be done at a place like Berkeley Lab, where tight collaboration for a wide range of capabilities is possible."

The new instrument was first used at the ALS to study the well-known topological insulator bismuth selenide. While the results confirmed that bismuth selenide's helical spin texture persists even at room temperature, they raised a perplexing question.

Lanzara says, "In an ARPES experiment, it's usually assumed that the spin polarization of detected photoelectrons accurately reports the spin polarization of electrons within the material." She explains that "this assumption is frequently made when confirming the helical spin texture of a TI's surface electrons. But in our spin-ARPES experiments, we found significant deviations between the spin polarizations of the surface electrons versus the photoelectrons. We knew we had to look further."

Flipping photoelectron spins

Probing the TI surface electrons didn't require the high photon energy of a synchrotron beam, so the new study was primarily done in a laboratory with a laser that could produce intense ultraviolet light capable of stimulating photoemission, and whose polarization was readily manipulated. The experiment used high-quality samples of bismuth selenide from Birgeneau's MSD and UC Berkeley labs.

In the first experiments, the incident light was p‑polarized, which means the electric part of the light wave was parallel to a plane that was perpendicular to the TI surface and oriented according to the path of the emitted photoelectrons. Since studies of topological insulators typically use p‑polarized light in this geometry, sure enough, the spin-ARPES measurements showed the photoelectrons were indeed spin polarized in directions consistent with the expected spin texture of the surface electrons.

"After we'd measured p‑polarization, we switched to an s‑polarized laser beam," Jozwiak says. "It only took a few minutes to collect the data." (S‑polarization means the electric part of the light wave is perpendicular to the same imaginary plane - perpendicular in German being senkrecht.)

Three minutes after he started the run, Jozwiak got a jolt. "The experiment was completely the same, except for the light polarization, but now the photoelectrons were spin polarized in the reverse direction - the opposite of what you'd expect." His first assumption was "I must have done something wrong."

Repeated careful experiments with a range of laser polarizations showed, however, that the spin polarization of the photons in the laser beam controlled the polarization of the emitted photoelectrons. When the laser polarization was smoothly varied - and even when it was circularly polarized right or left - the photoelectron spin polarization followed suit.

Why had no results counter to the expected surface textures been reported before? Probably because the most common kind of spin-ARPES experiment makes a few measurements in a typical geometry using p-polarized light. With other arrangements, however, photoelectron spin polarization departs markedly from expectations.

The team's theory collaborators, Park, Louie, and Lee, helped explain the unusual theoretical results when they predicted that just such differences between photoelectron and intrinsic textures should occur. There are also suggestions that the simple picture of spin texture in topological insulators is more complex than has been assumed. Says Lanzara, "It's a great motivation to keep digging."

The ability to hit a topological insulator with a tuned laser and excite polarization-tailored electrons has great potential for the field of spintronics - electronics that exploit spin as well as charge. Devices that optically control electron distribution and flow would constitute a significant advance.

Optical control of TI photoemission has more immediate practical possibilities as well. Bismuth selenide could provide just the right kind of photocathode source for experimental techniques that require electron beams whose spin polarization can be exquisitely and conveniently controlled.

DOE's Office of Science supports the ALS and supported this research.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

The Advanced Light Source is a third-generation synchrotron light source producing light in the x-ray region of the spectrum that is a billion times brighter than the sun. A DOE national user facility, the ALS attracts scientists from around the world and supports its users in doing outstanding science in a safe environment. For more information visit www-als.lbl.gov/.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Paul Preuss
510-486-6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Photoelectron spin-flipping and texture manipulation in a topological insulator,” by Chris Jozwiak, Cheol-Hwan Park, Kenneth Gotlieb, Choongyu Hwang, Dung-Hai Lee, Steven G. Louie, Jonathan D. Denlinger, Costel R. Rotundu, Robert J. Birgeneau, Zahid Hussain, and Alessandra Lanzara, appears in advance online publication of Nature Physics at:

More about spin-ARPES experiments at the ALS with the efficient spin time-of-flight analyzyer is in Phys Rev B at:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Spintronics

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project