Home > Press > Illinois State University use Nanoparticle Tracking Analysis in their development of novel bioanalytical assays
PhD student, Andre James, from the Driskell group at Illinois State University uses the NanoSight NTA system |
Abstract:
NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is being used in the development of novel bioanalytical assays at Illinois State University. The main application is the characterization of gold nanoparticles and differentiation between monodisperse samples from small numbers of aggregated materials.
Speeding up the detection and identification of viruses is one of the areas of new research of Illinois State University Assistant Professor of Chemistry Jeremy Driskell. This has been recognised by the US Department of Defense in their recent award of a major grant. Reliable and accurate nanoparticle composition is important in such work.
Here, Dr Driskell describes how he has used various techniques.
Talking about his current work, Dr Driskell says "Our research group is focused on the development of novel bioanalytical assays which includes detection of nucleic acids, proteins, and whole viruses. While other groups aim to improve assay sensitivity or detection limits, our central focus is on reducing assay speed and complexity. We are currently using gold nanoparticles and gold filters to develop assays utilizing surface-enhanced Raman spectroscopy for detection. In the process of characterizing the gold nanoparticles and monitoring the modification steps required for the SERS assays, we found that particle sizing techniques such as Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA) could also be used for assay readout. This finding and application is detailed in our recent publication in the Analyst." (1).
Dr Driskell continued: "We began by using DLS to characterize gold nanoparticles that we modify with Raman reporter molecules and antibodies. This was a simple means of detecting particle aggregation as a result of surface modification and is more sensitive than colorimetric detection, which we found was not useful for conditions that invoked slight aggregation. When we learned of NanoSight and NTA, we compared the data to DLS. For our purposes, NTA gave a much more accurate representation of the actual particle sizes in our solutions. DLS would frequently indicate aggregation of a nanoparticle population while NTA revealed few large aggregates while the majority of the particles remained monodisperse. Ultimately we concluded it was a better technique to give us a better understanding of nanoparticle composition (aggregates compared with individual particles) in terms of absolute numbers."
To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.
(1)
"Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS)" - A James & J Driskell, DOI: 10.1039/c2an36467k.
####
About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.
NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.
This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.
NanoSight has installed more than 500 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 600+ third party papers citing NanoSight results. NanoSight's leadership position in nanoparticle characterization is consolidated further with publication of an ASTM International standard, ASTM E2834, which describes the NTA methodology for detection and analysis of nanoparticles.
For more information, please click here
Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com
Copyright © NanoSight
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||