Home > Press > Using single quantum dots to probe nanowires: Lighting up plasmonic wires with nanometer accuracy
![]() |
(a) This is an optical image of the microfluidic crossed-channel device. Flow in the center control region (dashed circle) is manipulated in two dimensions by 4 external electrodes (not shown). Scale bar is 500 μm. (b) This is a schematic of the positioning and imaging technique. A single QD is driven along a trajectory close to the wire by flow control. The inset shows a microcope image of a typical nanowire with 1 μm scale bar.
Credit: JQI |
Abstract:
Modern telecommunications happens because of fast electrons and fast photons. Can it get better? Can Moore's law---the doubling of computing power ever 18 months or so---be sustained? Can the compactness (nm-scale components) of electronics be combined with the speed of photonics? Well, one such hybrid approach is being explored at the Joint Quantum Institute (*), where scientists bring together three marvelous physics research fields: microfluidics, quantum dots, and plasmonics to probe and study optical nanostructures with spatial accuracy as fine as 12 nm.
PLASMONICS
When light strikes a strip of metal an electron wave can be excited in the surface. Is this "surface plasmon" a bit of light or electricity. Well, it's a bit of both. The wavelength of this electromagnetic wave is shorter and the energy density higher than that of the incoming laser light; the plasmon is thus tightly localized light constrained to propagate along the meal surface. The science of "plasmonics" has arisen to capitalize on various imaging, sensing, and processing abilities inherent in plasmons. To start with, though, one needs to know exactly what happens at that laser-excited metallic surface. That light is converted into the plasmonic wave; later the energy can be reconverted into light.
Here's where the JQI experiment comes in. The main result of the work, published February 5 in the journal Nature Communications, is to provide a map showing how the metal strip, in this case a silver wire 4 microns long and 100 nm wide, lights up.
MICROFLUIDICS AND QUANTUM DOTS
The other two chief components of the experiment, in addition to plasmonics, are microfluidics and quantum dots. Microfluidics, a relatively new science all by itself, features the movement of nanoliter volumes of fluids through channels defined on microchips, analogous to the conducting paths strung across microprocessors for carrying electrical currents. Quantum dots, nanometer-sized semiconductor balls, are tailored to possess a specified set of allowed energy states; in effect the dots are artificial atoms that can be moved around. In the JQI experiment the 10-nm-wide dots (the important cadmium-selenide layer is only 3 nm thick) float in a fluid whose flow can be controlled by varying an applied voltage. The dots are drawn up close to the nanowire as if they were mines next to a submarine.
Indeed the dot is there precisely to excite the wire. The dot is fluorescence machine---in a loose sense a nanoscopic lightbulb. Striking it with green laser light, it quickly re-emits red light (one photon at a time), and it is this radiation which excites waves in the nearby wire, which acts like an antenna. But the interaction is a two-way street; the dot's emissions will vary depending on where along the length of the wire it is; the end of the wire (like any pointy lightning rod on a barn) is where electrical fields are highest and this attracts the most emission from the dot.
A CCD camera captures light coming from the dots and from the wire. The camera qualities, the optical properties of the dot, the careful positioning of the dot, and the shape and purity of the nanowire combine to provide an image of the electric field intensity of the nanowire with 12-nm accuracy. The intensity map shows that the input red light from the quantum dot (wavelength of 620 nm) has effectively been transformed into a plasmonic wavelength of 320 nm.
Chad Ropp is a graduate student working on the project and the lead author on the paper. "Plasmonic maps have been resolved before, but the quantum mechanical interactions with a single emitter have not, and not with this degree of accuracy," said Ropp.
POSSIBLE APPLICATIONS
In an actual device, the quantum dot could be replaced by a bio-particle which could be identified through the nanowire's observed effect on particle's emissions. Or the dot-wire duo could be combined in various configurations as plasmonic equivalents of electronic circuit components. Other uses for this kind of nanowire setup might exploit the high energy density in the plasmonic state to support nonlinear effects. This could enable the nanowire-dot combination to operate as an optical transistor.
"Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot," Chad Ropp, Zachary Cummins, Sanghee Nah, John T. Fourkas, Benjamin Shapiro, Edo Waks, Nature Communications, paper published online 5 February 2013. Chad Ropp, , 301-405-5010
####
About Joint Quantum Institute
The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.
For more information, please click here
Contacts:
Phillip F. Schewe
301-405-0989
Copyright © Joint Quantum Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Optical computing/Photonic computing
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |