Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls: JICS-led collaborative research on lithium coatings unlocks mystery surrounding the harnessing of fusion energy

 Dynamic in lithiated graphite: a) Experiments show that deuterium bombardment dramatically increases the surface oxygen; b) Simulation shell for the D-impact chemistry in lithiated and oxidized carbon
Dynamic in lithiated graphite: a) Experiments show that deuterium bombardment dramatically increases the surface oxygen; b) Simulation shell for the D-impact chemistry in lithiated and oxidized carbon

Abstract:
he research of a multi-institutional team from the U.S., Japan, and France, led by Predrag S. Krstic of the Joint Institute for Computational Sciences and Jean Paul Allain of Purdue University has answered the question of how the behavior of plasma—the extremely hot gases of nuclear fusion—can be controlled with ultra-thin lithium films on graphite walls lining thermonuclear magnetic fusion devices.

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls: JICS-led collaborative research on lithium coatings unlocks mystery surrounding the harnessing of fusion energy

Knoxville, TN | Posted on February 1st, 2013

"It is remarkable that seemingly insignificant lithium depositions can profoundly influence the behavior of something as powerful as fusion plasmas," Krstic said.

Krstic and his team explain their research in a paper titled "Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls," recently accepted for publication in Physical Review Letters.

"How lithium coatings on graphite surfaces control plasma behavior has largely remained a mystery until our team was able to combine predictions from quantum-mechanical supercomputer simulations on the Kraken and Jaguar systems at Oak Ridge National Laboratory and in situ experimental results from the Purdue group to explain the causes of the delicate tunability of plasma behavior by a complex lithiated graphitic system," Krstic said. "Surprisingly, we find that the presence of oxygen in the surface plays the key role in the bonding of deuterium, while lithium's main role is to bring the oxygen to the surface. Deuterium atoms preferentially bind with oxygen and carbon-oxygen when there is a comparable amount of oxygen to lithium at the surface. That finding well matches a number of controversial experimental results obtained within the last decade."

The performance demands on plasma-facing components and the other materials that would surround future fusion power reactors is one of the reasons the U.S. National Academy of Engineering has ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. Harnessing energy from thermonuclear magnetic fusion has been challenged in part by the extreme environment of hot and dense plasma interacting with the boundary fusion reactor walls. The strong coupling between the plasma edge and the wall surface, which causes erosion of the wall material, retention of radioactive tritium, and pollution of the plasma, has been hampered by a lack of fundamental understanding of what takes place at the interface where the plasma and solid material meet.

Recent research in which lithium coatings have been deposited on a variety of metallic and graphitic surfaces has provided evidence that plasma strongly responds on the deposited films. In fact, the use of ultra-thin coatings of lithium on graphite has resulted in an unprecedented influence on plasma behavior, including control of hydrogen recycling—one of the most important issues in the construction of future magnetic fusion-energy devices—and extraordinary improvements in energy confinement.

The study of the lithium coatings also impacts many areas beyond magnetic fusion, including nanoelectronics, lithium batteries, computational materials science, bioengineering and biophysics, plasma physics, and theoretical physics and chemistry.

"This work can lead to improvement of the hydrogen-recycling properties of the fusion materials facing plasma, as well as advancements in other areas," Krstic said. "We hope that our finding will inspire future theoretical and experimental work in diverse applications not only with lithium coatings on various materials but also with combinations of other types of materials that are potentially good ‘oxygen-getters'—for example elements of the first two groups of the periodic system."

Authors of the paper are P.S. Krstic, J.P. Allain, C.N. Taylor, J. Dadras, S. Maeda, K. Morokuma, J. Jakowski, A. Allouche, and C.H. Skinner. Support for the project was provided by the U.S. Department of Energy (DOE); the National Science Foundation (NSF), including its Extreme Science and Engineering Discovery Environment; and the Japan Science and Technology Agency.

Computational resources for the simulations were provided by the National Institute for Computational Sciences on the Kraken supercomputer, and the National Center for Computational Sciences on the Jaguar supercomputer. Laboratory experiments were conducted at Purdue University and Princeton Plasma Physics Laboratory.

####

About Joint Institute for Computational Sciences
The Joint Institute for Computational Sciences was established by the University of Tennessee and Oak Ridge National Laboratory (ORNL) to advance scientific discovery and state-of-the-art engineering, and to further knowledge of computational modeling and simulation. JICS pursues its mission by taking full advantage of petascale-and-beyond computers housed at ORNL, and by educating a new generation of scientists and engineers well-versed in the application of computational modeling and simulation for solving the most challenging scientific and engineering problems.

About NICS

The National Institute for Computational Sciences (NICS) operates the University of Tennessee supercomputing center, funded in part by the National Science Foundation. NICS is a major partner in NSF’s Extreme Science and Engineering Discovery Environment, known as XSEDE. The Remote Data Analysis and Visualization Center (RDAV) is a part of NICS.

For more information, please click here

Contacts:
Predrag Krstic

National Institute for Computational Sciences

Copyright © Joint Institute for Computational Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project