Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Southampton scientist develops strongest, lightest glass nanofibres in the world

This image shoes Gilberto Brambilla, University of Southampton, with the nanowire fabrication rig.

Credit: University of Southampton
This image shoes Gilberto Brambilla, University of Southampton, with the nanowire fabrication rig.

Credit: University of Southampton

Abstract:
The University of Southampton's Optoelectronics Research Centre (ORC) is pioneering research into developing the strongest silica nanofibres in the world.

Southampton scientist develops strongest, lightest glass nanofibres in the world

Southampton, UK | Posted on January 10th, 2013

Globally the quest has been on to find ultrahigh strength composites, leading ORC scientists to investigate light, ultrahigh strength nanowires that are not compromised by defects. Historically, carbon nanotubes were the strongest material available, but high strengths could only be measured in very short samples just a few microns long, providing little practical value.

Now research by ORC Principal Research Fellow Dr Gilberto Brambilla and ORC Director Professor Sir David Payne has resulted in the creation of the strongest, lightest weight silica nanofibres - 'nanowires' that are 15 times stronger than steel and can be manufactured in lengths potentially of 1000's of kilometres.

Their findings are already generating extensive interest from many companies around the world and could be set to transform the aviation, marine and safety industries. Tests are currently being carried out globally into the potential future applications for the nanowires.

"With synthetic fibres it is important to have high strength, achieved by production of fibre with extremely low defect rates, and low weight," says Dr Brambilla.

"Usually if you increase the strength of a fibre you have to increase its diameter and thus its weight, but our research has shown that as you decrease the size of silica nanofibres their strength increases, yet they still remain very lightweight. We are the only people who currently have optimised the strength of these fibres.

"Our discovery could change the future of composites and high strength materials across the world and have a huge impact on the marine, aviation and security industries. We want to investigate their potential use in composites and we envisage that this material could be used extensively in the manufacture of products such as aircraft, speedboats and helicopters," he adds.

Professor Payne explains: "Weight for weight, silica nanowires are 15 times stronger than high strength steel and 10 times stronger than conventional GRP (Glass Reinforced Plastic). We can decrease the amount of material used thereby reducing the weight of the object.

"Silica and oxygen, required to produce nanowires, are the two most common elements on the earth's crust, making it sustainable and cheap to exploit. Furthermore, we can produce silica nanofibres by the tonne, just as we currently do for the optical fibres that power the internet."

The research findings came about following five years of investigations by Dr Brambilla and Professor Payne using Gilberto's £500,000 Fellowship funding from the Royal Society.

Dr Brambilla shared his findings with fellow researchers at a special seminar he organised recently at the Kavli Royal Society International Centre, at Chicheley Hall, in Buckinghamshire.

"It was particularly challenging dealing with fibres that were so small. They are nearly 1,000 times smaller than a human hair and I was handling them with my bare hands," says Dr Brambilla.

"It took me some time to get used to it, but using the state-of-the-art facilities at the ORC I was able to discover that silica nanofibres become stronger the smaller they get. In fact when they become very, very small they behave in a completely different way. They stop being fragile and don't break like glass but instead become ductile and break like plastic. This means they can be strained a lot.

"Up until now most of our research has been into the science of nanowires but in the future we are particularly interested in investigating the technology and applications of these fibres," adds Dr Brambilla.

####

For more information, please click here

Contacts:
Glenn Harris

44-023-805-93212

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To find out more about the ORC's work on silica nanowires go to:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Marine/Watercraft

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project