Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Switching with a few photons for quantum computing

Provided/Gaeta Lab
Electron microscope photo of a cross-section of photonic bandgap fiber. Tiny glass tubes surrounding the core bend light waves in such a way that they interfere and cancel out, focusing all the energy of a beam into the hollow core.
Provided/Gaeta Lab

Electron microscope photo of a cross-section of photonic bandgap fiber. Tiny glass tubes surrounding the core bend light waves in such a way that they interfere and cancel out, focusing all the energy of a beam into the hollow core.

Abstract:
Quantum computing, where bits of information, or "qubits," are represented by the state of single atomic particles or photons of light, won't be of much use unless we can read the results. Cornell researchers have taken a step in that direction with a device that can measure the presence of just a few photons without disturbing them.

Switching with a few photons for quantum computing

Ithaca, NY | Posted on December 5th, 2012

The experiment mixes a strong beam of light with a very weak "signal" beam consisting of fewer than 20 photons in such a way that the phase -- a measure of the timing of a wave -- of the strong beam changes in proportion to the number of photons in the signal.

"Ideally what people want is to be able to measure the presence of a single photon, without destroying it," said Alex Gaeta, professor and director of applied and engineering physics. "Nevertheless, there are interesting quantum information algorithms you can do with just a few photons." Switching a light beam with a single photon would be the equivalent of a "gate" in a conventional electronic computer, where a 1 or 0 input switches the output between 1 and 0. In future applications this could communicate the state of a qubit in a quantum computer, or the photons themselves might be the qubits.

The device created by Gaeta's research group makes use of a new type of optical fiber known as photonic bandgap fiber, which consists of a hollow core surrounded by a honeycomb of tiny glass tubes. The honeycomb acts as a diffraction grating that bends light in such a way that all wavelengths are canceled except for a narrow gap at the fundamental wavelength of the light to be transported, confining that light to an intense beam in the core. The advantage over conventional glass fiber is that the core can be filled with a gas.

In experiments reported in the Dec. 2 online issue of the journal Nature Photonics, the researchers filled the core of a fiber about 9 centimeters long with rubidium vapor to exploit what's known as the Kerr effect, in which the oscillating electromagnetic fields in a beam of light interact with the electromagnetic fields of the electrons in atoms to change the refractive index of the medium, which changes the way light is affected when it passes through. The weak signal beam changes the refractive index of the rubidium vapor enough to change the phase of the strong beam, which can be measured after the beam emerges from the fiber. The process is "nondestructive" in that the number of photons in the signal beam is not affected.

Varying the intensity of the signal, and thereby the number of photons, the researchers measured a phase change of about .3 milliradians (a unit of angle) per photon, suggesting that eventually single photons could be detected, and that such a device could be used to count photons. Varying the length of pulses of the strong beam showed that the system could respond in less than 5 nanoseconds, indicating that the strong beam could be modulated at frequencies up to 50 MHz.

Similar measurements have been performed in apparatus cooled to cryogenic temperatures, the researchers noted, but this is the first time it has been done at room temperature.

The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5553


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project