Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lava dots: Rice makes hollow, soft-shelled quantum dots: Investigation of quantum dots leads to new particles formed by molten droplets

A nine-pack of lava dots created at Rice. Photo by Sravani Gullapalli
A nine-pack of lava dots created at Rice.

Photo by Sravani Gullapalli

Abstract:
Serendipity proved to be a key ingredient for the latest nanoparticles discovered at Rice University. The new "lava dot" particles were discovered accidentally when researchers stumbled upon a way of using molten droplets of metal salt to make hollow, coated versions of a nanotech staple called quantum dots.

Lava dots: Rice makes hollow, soft-shelled quantum dots: Investigation of quantum dots leads to new particles formed by molten droplets

Houston, TX | Posted on November 22nd, 2012

The results appear online this week in the journal Nanotechnology. The researchers also found that lava dots arrange themselves in evenly spaced patterns on flat surfaces, thanks in part to a soft outer coating that can alter its shape when the particles are tightly packed.

"We're exploring potential of using these particles as catalysts for hydrogen production, as chemical sensors and as components in solar cells, but the main point of this paper is how we make these materials," said co-author Michael Wong, professor of chemical and biomolecular engineering at Rice. "We came up with this ‘molten-droplet synthesis' technique and found we can use the same process to make hollow nano-size particles out of several kinds of elements. The upshot is that this discovery is about a whole family of particles rather than one specific composition."

Like their quantum dot cousins, Rice's lava dots can be made of semiconductors like cadmium selenide and zinc sulfide.

Wong's lab has been working steadily to improve the synthesis of quantum dots for more than five years. In 2007, Wong's team discovered a cleaner and cheaper way to synthesize four-legged quantum dots — particles smaller than a living cell that look like tiny versions of children's jacks. These "nanojacks," which are also called quantum tetrapods, can be used to harvest sunlight in a revolutionary new kind of solar panel.

The key step in the 2007 discovery was the use of a surfactant called CTAB. In 2010 Rice graduate student Sravani Gullapalli was attempting to refine the "nanojack" synthesis even further when she discovered lava dots.

"This new chemistry to make the tetrapods was fairly cheap, but we were looking for an even cheaper way," Wong said. "Sravani said, ‘Let's get rid of this expensive phosphorus surfactant and just see what happens.' So she did, and these little things just popped out on the electron microscope screen."

Wong recalled the team's initial surprise. "We said, ‘What is going on here? How do you go from four-legged nanojacks to these little balls?'"

He said it took the team more than a year to decipher the unusual formation mechanism that yielded the hollow, soft-shelled particles.

To make the particles, Gullapalli added three kinds of solid powder — cadmium nitrate, selenium and a tiny amount of CTAB — to an oil solvent. She then slowly heated the mixture while stirring. The cadmium nitrate melted first and formed tiny nanodroplets that cannot be seen with the naked eye.

"Nothing happens until the temperature continues to rise and the selenium melts," Gullapalli said. "The molten selenium then wraps around the cadmium nitrate droplet, and the cadmium nitrate diffuses out and leaves a hole where the droplet once was."

She said the cadmium selenide shell surrounding the hole is nanocrystalline and is enveloped in a soft outer shell of pure selenium.

When Gullapalli examined the lava dots with a transmission electron microscope, she found them to be bigger than standard quantum dots, about 15-20 nanometers in diameter. The holes were about 4-5 nanometers in diameter. She also noticed something peculiar: When sitting by themselves they appeared round, and when tightly packed, the shell appeared to become compressed, even though neighboring dots never came into actual contact with one another.

"That's one of the twists to this weird chemistry," Wong said. "The solvent forms its own surfactant during this process. The surfactant coats the particles and keeps them from touching each other, even when they are tightly packed together."

Wong's team later found it could use the molten droplet method to make lava dots out of zinc sulfide, cadmium sulfide and zinc selenide.

"We found that the hollow particles met and even exceeded some performance metrics of quantum dots in a solar-cell test device, and we're continuing to examine how these might be useful," Gullapalli said.

Additional co-authors include former Rice undergraduate Jason Grider '12; Rice graduate student Minjung Cho; former Rice postdoctoral researcher Hitesh Bagaria; Kyu-Sung Lee of Arizona State University; Vicki Colvin, Rice's vice provost for research and the Kenneth S. Pitzer-Schlumberger Professor of Chemistry; and Ghassan Jabbour, director of the Solar and Alternative Energy Engineering Research Center at Saudi Arabia's King Abdullah University of Science and Technology.

The research was supported by the Shell Center of Sustainability at Rice University and SABIC Americas.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/AboutRice.

For more information, please click here

Contacts:
Jade Boyd


Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The Nanotechnology paper is available at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project