Home > Press > Changing the dynamics of bulk materials
![]() |
The front cover image represents the 3-D structure of a new polymer-derived nanographene bulk material that consists of a 3-D network of single-layer graphene nanoplatelets. The material is mechanically robust and combines a graphene-like surface area with an open macroporosity thus allowing one to dynamically control its macroscopic properties through ion-induced interfacial electric fields. |
Abstract:
Lawrence Livermore researchers have developed a new bulk material whose physical properties can be dynamically changed by an external signal.
The scientists came up with a method to fabricate mass-producible graphene-based bulk materials from low-cost polymer-derived carbon foams by selectively removing carbon atoms from a network composed of both unstructured carbon and graphite nanoplatelets.
"The new technique is inexpensive, scalable, and yields mechanically robust, centimeter-sized monolithic samples that are composed almost entirely of interconnected networks of single-layer graphene nanoplatelets" said Ted Baumann of Lawrence Livermore who developed the synthetic approach.
These graphene bulk materials have an ultra-high surface area and may thus be used for energy storage systems such as super-capacitors where energy is stored by polarization of the graphene electrode/electrolyte interface.
Graphene bulk material also could be used as an electrically conductive network to support the active material in battery applications. Desalination using capacitive desalination is another emerging field.
The advantage of using bulk materials versus composite materials (made from porous carbon particles and a binder) is their superior stability, which allows for longer lifetimes, higher conductivity (less losses during charging and discharging), and the ability to tune the pore structure.
"This is a potentially game changing concept in materials science," said Juergen Biener, lead LLNL author of the cover article in the Sept. 24 issue of the journal, Advanced Materials. "Just imagine what you could do with a bulk material with properties you can change dynamically by an external variable. For example, you could switch a bulk material dynamically between a conductive and an insulating state."
The specific surface area of this 3-dimensional nanographene bulk material is comparable to that of a free-standing graphene layer, but it has an open porosity that allows rapid mass transport through the material.
Most graphene based bulk materials are made by self-assembly of graphene oxide, which is still very expensive and costs up to several hundred dolloars per gram. At this price, it is not economical to use graphene based bulk materials for energy storage even though they have excellent properties for this application. Biener said. By contrast, the Livermore technique of making graphene based bulk materials is inherently inexpensive (only a few dollars per kilogram), scalable, and yields mechanically robust, centimeter-sized monolithic samples. "That is a major breakthrough toward applications," Biener said.
The group has tested the new technique by making large pieces of the material, and tested actuator and the tunable resistor applications.
Other Livermore researchers include Marcus Worsely, Arne Wittstock, Jonathan Lee, Monika Biener, Christine Orme, Sergei Kucheyev, Brandon Wood, Trevor Willey and Alex Hamza.
Other institutions include the Karlsruhe Institute of Technology, Technische Universität Darmstadt, and Technische Universitat Hamburg-Harburg.
####
About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.
For more information, please click here
Contacts:
Anne M Stark
LLNL
(925) 422-9799
Copyright © Lawrence Livermore National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |