Home > Press > Performance Model of Biomolecules in Magnetic Fields Revealed by Scientists
Abstract:
Iranian researchers at Malek-e Ashtar University of Technology and Tarbiat Modarres University managed to discover a meaningful model for performance of biomolecules in magnetic fields by studying the effects of magnetic nanoparticles on the enzyme activity of Flavobacterium, modified with magnetic nanoparticles.
Cell stabilization is the physical holding or connection of a cell in a particular place in a way that it can be used repeatedly and continuously. Unique and special properties of magnetic nanoparticles are the reason for their wide applications in magnetic modification of cells and biomolecules. The cells can be stabilized by using either external or internal magnetic fields. Cell stabilization method has been used in biodegradability, removal of undesired materials, material production, and fabrication of biosensors. This technology can also be used in the designing of the new generation of detection kits that are based on the connection of biomolecules and magnetic nanoparticles.
In this research, Flavobacterium was firstly magnetically modified by using magnetic nanoparticles. Then, the magnetically modified bacterium was stabilized with internal and external magnetic field, and the effect of nanoparticles and the stabilization process method on biological performance of the magnetically modified bacterium was studied afterwards.
The main purpose of the research was to study the effect of magnetic nanoparticles on enzyme activity of Flavobacterium (as a model), and the enzyme stability of the magnetically modified bacterium was evaluated. Results of the research showed that stabilization with external and internal magnetic field increased the enzyme activity of the bacterium stabilized at high and low pH values.
The results of the research have been published in December 2010 in Biocatalysis and Biotransformation, vol. 28, issue 5-6, and also in January 2012 in Bioresource Technology, vol. 104, pp. 6-11.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||