Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Boosting European competitiveness in photovoltaics: Empa joins consortium to develop solar cells

Photovoltaics at Empa
Photovoltaics at Empa

Abstract:
With 13 partners from all over Europe, Empa, the Swiss Federal Laboratories for Materials Science and Technology, has launched an EU-funded project to develop affordable, more efficient solar cells. With an overall budget of 10 million Euro, the SCALENANO project aims at achieving breakthroughs in the cost-efficiency of photovoltaic devices and modules based on advanced thin film technologies.

Boosting European competitiveness in photovoltaics: Empa joins consortium to develop solar cells

Duebendorf, Switzerland | Posted on July 14th, 2012

Thin film solar cell technologies have a potential to offer a higher material utilization and lower module costs compared to classical wafer-based silicon solar cells because they employ light-absorbing materials that are about 100-times thinner than silicon wafers. Devices based on the substance class of chalcogenides, such as copper indium gallium (di)selenide (also known as CIGS), exhibit the highest efficiencies of all thin film photovoltaic technologies and have already entered the stage of mass production. However, current production methods typically rely on vacuum-based deposition processes that are difficult to control over large surfaces and require expensive equipment. This counteracts the potential reduction of material costs that are inherent to thin film technologies.

To take up this challenge, the EU-funded international project SCALENANO ("Development and scale-up of nanostructure-based materials and processes for low-cost, high-efficiency chalcogenide-based photovoltaics") - which runs until mid-2015 - will develop alternative, vacuum-free processes based on the electro-deposition of nanostructured precursors. The project also includes the exploration and development of alternative processes with high-throughput and process rates, as well as their extension to the next generation of Cu2ZnSn(S,Se)2-based absorbers (so-called kesterites) that only use cheap and abundant elements. Altogether, this should be a strong boost for European competitiveness in photovoltaic technologies.

Empa's laboratory for Thin Films and Photovoltaics, led by Ayodhya Tiwari, will contribute to the project by investigating solution- and nanoparticle-based deposition of kesterite absorbers, front electrical contacts of transparent conducting oxides (TCOs) and supplying reference solar cells prepared by vacuum-based techniques. Project leader Yaroslav Romanyuk anticipates that "SCALENANO findings may find applications not only in photovoltaics but also in other fields such as smart windows and batteries."

####

About Empa
Empa as a Swiss Materials Science and Technology Institution within the ETH domain is part of the Swiss Science-Technology-Education community. It specializes in applied research and development as well as sophisticated services in the field of sustainable materials science and technology. Its core activities are innovative collaboration with industry and public institutions to ensure the safety of humankind and the environment, knowledge propagation and university-level teaching. The Empa Academy disseminates the latest results of our work at events and in publications. The focal points of our activities are: modern materials, their surfaces and interfaces, construction materials and systems, materials and systems that protect the human body and ensure its wellbeing, information, simulation and reliability technology, and mobility, energy and the environment. Approximately 820 employees work in over 30 specialist fields in nationally and internationally funded research programs, partnership-based development projects and interdisciplinary customer-specific service assignments.

For more information, please click here

Contacts:
Sabine Charlotte Voser Moebus
+41 44 823 45 99

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project