Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers love triangles: Shaped catalysts spark longer, faster-growing, rule-breaking nanowires

Abstract:
A research team at Case Western Reserve University has found that gold catalysts shaped in the form of a cube, triangle, or other higher order structures grow nanowires about twice as fast and twice as long compared to wires grown with the more typical spherically-shaped catalysts.

Researchers love triangles: Shaped catalysts spark longer, faster-growing, rule-breaking nanowires

Cleveland, OH | Posted on June 6th, 2012

This finding could prove useful to other scientists who are growing nanowires to build sensors fast enough to detect changes in red and white blood cells. These sensors in turn could help identify various forms of cancer in the body. The wires are so small - as small as one-5,000th the width of a human hair - they could also be used to build the next generation of "invisible" computer chips.

Xuan Gao, assistant professor of physics, and R. Mohan Sankaran, associate professor of chemical engineering, describe their work in the paper, "Shape-Controlled Au Particles for InAs Nanowire Growth," published in the journal Nano Letters.

Their research team included Case Western Reserve graduate students Pin Ann Lin and Dong Liang and Hathaway Brown Upper School student Samantha Reeves.

The researchers tested growth using both the preferentially-shaped and spherical catalysts under identical conditions to rule out error in the comparisons.

They suggest that the long accepted model of vapor-liquid-solid, or VLS, growth is incomplete, and that more tests are needed in order to fully understand the process.

Here's why: the researchers found that that the nanowires grown with the triangular catalyst have a much thicker layer of the metal Indium than the VLS nanowire growth model predicts.

The finding suggests a correlation between Indium concentration and growth enhancement. The team made the discovery when they beamed electrons at the nanowires to release high energy x-rays, a process called energy-dispersive X-ray spectroscopy. The magnitude of these energy bursts were used to determine chemical properties of the nanowires.

To grow nanowires, the researchers combined elements such as indium and arsenic, from rows 4 and 5 of the periodic table of elements. Elements from these rows bond to the gold particle to create a semiconductor that neither allows great flow of electric current nor greatly prevents its flow. This is called the "bottom-up method" which Gao describes as truly like "growing a plant from a seed."

Nanowires can also be made "top-down" with precise cuts on a large piece of semiconducting material, reducing it to a tiny structure of wires.

The disadvantage to this, Sankaran explains, is that cutting wires smaller than around 45 nm, which is the current standard in computer chips, "is impossible if we are using a machine. But if we were to grow the wires from chemical compounds we could make them as small as 10 nm, meaning we could fit more wires in a smaller space for greater speed."

However the bottom-up method only produces wires in bunches as opposed to the large interwoven structures made from the top-down method of cutting. The challenge is combining chemically-grown wires in ways that they work in complex electronics such as computer chips or highly-sensitive sensors.

Both Gao and Sankaran describe their research efforts as truly collaborative. Sankaran makes catalysts of different shapes to grow the nanowires, and Gao tests the properties of these wires and connects them to possible uses in the field.

This duo plans to continue exploring the correlation between catalyst shape and other structural characteristics of the wires in order to further develop the VLS model, and move closer to implementing nanowires in new technology.

Release prepared by Sean Linden, an undergraduate student at Case Western Reserve.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project