Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Peratech creates fast-acting Electronic Nose using QTC technology

Granular QTC used in Peratech's nose
Granular QTC used in Peratech's nose

Abstract:
Peratech, the innovator in touch technology, is developing an Electronic Nose using its award-winning, Quantum Tunnelling Composite material. This new sensor technology detects the presence of Volatile Organic Compounds (VOCs) very rapidly and can recover equally quickly, in a matter of seconds.

Peratech creates fast-acting Electronic Nose using QTC technology

Richmond, UK | Posted on May 11th, 2012

QTC™ materials change their resistance when a force is applied and, in this case, the polymer content of the composite swells when exposed to VOCs. One form of Peratech's sensor uses a granular type of QTC material that provides a high surface area for absorption enabling it to detect levels of VOCs in the region of 10-100 ppm. The sensor rapidly recovers once the VOCs have gone from the surrounding atmosphere and it is the speed of sensing and recovery that marks the difference between QTC sensors and those using other sensing technologies. An additional feature of the QTC technology is that it has very low power requirements.

"The electronic nose application was developed in conjunction with the Quantum Tunnelling Composite research group at the University of Durham," explained David Lussey, CTO of Peratech. "We are now looking for companies who are interested in licensing the technology from us to develop products."

Professor David Bloor, who is involved in a long-term collaboration with Peratech, added, "Quantum Tunnelling Composite is unique in the area of materials science and a team of researchers and students have been involved in the investigation of its properties. These never cease to amaze and open up different ways in which it can be used."

The conductive particles used in the QTC Electronic Nose have nano-sized features and are distributed in a non-conductive polymer. When a force is applied or swelling occurs, the particles move close enough for the electron flow between the particles to alter due to an effect called Quantum Tunnelling. The polymer used is selected for its response to the particular VOCs to be monitored.

####

About Peratech Limited
Peratech is the inventor of Quantum Tunnelling Composite technology. QTC materials are re-inventing the Human Machine Interface with Touch Innovation™ that improves, extends and enhances the user experience - making possible solutions that could not be made before. QTC materials give enormous flexibility in the design, shape, thickness and style of a switch or touch sensor and can be made in a range of forms from traditional switch replacements, through textile and screen printed switches to innovative, pressure-sensitive QTC Touchscreens that allow for three dimensions of input. QTC solutions are thinner, smaller, more discrete, less expensive and ultra-reliable as there are no moving parts. A Touch Amazing™.

For more information, please click here

Contacts:
Peratech Limited
Old Repeater Station
Brompton-on-Swale, North Yorkshire, DL10 7JH United Kingdom
Tel: +44 (0) 8700 727272
Fax: +44 (0) 8700 727273


Nigel Robson
Vortex PR
Island House, Forest Road
Forest, Guernsey, GY8 0AB United Kingdom
Tel: +44 (0) 1481 233080

Copyright © Peratech Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project