Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

Abstract:
Scientists working as part of the Metrology for Energy Harvesting Project have developed a new model to deliver the maximum power output for piezoelectric energy harvesters.

UK scientists develop optimum piezoelectric energy harvesters: Research will lead to better more efficient harvesting devices

UK | Posted on March 2nd, 2012

Piezoelectric materials convert electrical energy into a strain (or vice-versa). The best known use of piezoelectricity is for medical ultrasound.

Piezoelectric energy harvesters utilise energy from unwanted mechanical vibrations, such as the rattling of an air conditioning duct or the movement of a bridge with passing traffic. Power levels are small, usually a few milli-watts or less, but the scavenged energy could be used to power autonomous devices such as wireless sensors.

Piezoelectric energy harvesters are typically vibrating cantilevers, covered with a piezoelectric layer that converts mechanical strain to an electrical charge to power devices. Most developers cover the entire length of the cantilever with piezoelectric material in an attempt to maximise the conversion efficiency.

However, scientists based at the UK's at National Physical Laboratory, one of seven national measurement institutes involved in the European Metrology Research Programme funded project have discovered that this approach is counterproductive. Their research shows that due to the charge redistribution across the cantilever there is an internal loss of power of up to 25% of potential output. To counter this the team has developed a model to show that more energy can be converted if the beam is only covered with piezoelectric for two thirds of its length.

Current piezoelectric energy harvesting devices are used in applications such as wireless and battery-less light switches, and sensors. However, their potential applications range from the predictive maintenance of any moving or rotating machine parts, to electronic devices that harvest their own wasted operational energy to be more energy efficient.

Harvesting energy that would otherwise be wasted is key to meeting future energy demands while reducing carbon emissions. This energy can come from light, heat, movement or vibrations.

Markys Cain, Knowledge Leader at NPL, said:

"The energy harvesting market was worth $605 million in 2010 but is predicted to reach $4.4 billion by the end of this decade. For the market to reach its true potential we need to develop the products that can guarantee a greater energy yield and drive industrial adoption of energy harvesting products. The work undertaken by the Functional Materials Group at NPL will do exactly that, providing a model for more efficient piezoelectric energy harvesting methods."

The research was originally published in Applied Physics Letters 100, 073901 (2012).

####

For more information, please click here

Contacts:
Joe Meaney

44-787-546-9309

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project