Home > Press > Graphene: Impressive capabilities on the horizon: A Rice University research team makes graphene suitable for a variety of organic chemistry applications
Abstract:
The Air Force Office of Scientific Research (AFOSR), along with other funding agencies, helped a Rice University research team make graphene suitable for a variety of organic chemistry applications—especially the promise of advanced chemical sensors, nanoscale electronic circuits and metamaterials.
Ever since the University of Manchester's Andre Geim and Konstantin Novoselov received the 2010 Nobel Prize in Physics for their groundbreaking graphene experiments, there has been an explosion of graphene related discoveries; but graphene experimentation had been ongoing for decades and many ultimate graphene associated breakthroughs were already well under way in various labs when the Nobel committee acknowledged the significance of this new wonder material.
And one such laboratory was Dr. James Tour's at Rice, whose team found a way to attach various organic molecules to sheets of graphene, making it suitable for a range of new applications. Starting with graphene's two-dimensional atomic scale honeycomb lattice of carbon atoms, the Rice team built upon previous graphene community discoveries to transform graphene's one sheet structure into a superlattice.
While carbon is a key part in most organic chemical reactions, graphene poses a problem in that it plays an inert role—not responding to organic chemical reactions. The Rice team solved this dilemma by treating graphene with hydrogen. This classic hydrogenation process restructured the graphene honeycomb lattice into a two-dimensional, semiconducting superlattice called graphane.
The hydrogenation process can then be tailored to make particular patterns in the superlattice to be followed by the attachment of mission specific molecules to where those hydrogen molecules are located. These mission specific molecular catalysts allow for the possibility of a wide variety of functionality. They can not only be used as the basis for creating graphene-based organic chemistry, but tailored for electronics and optics applications, as well as novel types of metamaterials for nanoengineering highly efficient thermoelectric devices and sensors for various chemicals or pathogens. The beauty of this process is the promise it holds for future devices with the ability to efficiently accomplish a wide variety of highly sophisticated functions in one small affordable device.
Dr. Charles Lee, the AFOSR program manager who funded this research, notes that graphene chemistry in general can enable smart materials for many special applications and that this latest effort in particular can contribute to future electronics applications and may be a way to arrive at faster and less energy consuming electronics.
####
About Air Force Office of Scientific Research
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.
Like AFOSR on Facebook or follow us on Twitter to stay up-to-date with all of our highlighted research and 60th anniversary events.
For more information, please click here
Contacts:
Dr. Robert White
703-588-0665
Copyright © Air Force Office of Scientific Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||