Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stretching electrical conductance to the limit

Nongjan (NJ) Tao, director of the Center for Bioelectronics and Biosensors, Biodesign Institute.
Photo by: The Biodesign Institute at Arizona State University
Nongjan (NJ) Tao, director of the Center for Bioelectronics and Biosensors, Biodesign Institute.

Photo by: The Biodesign Institute at Arizona State University

Abstract:
Individual molecules have been used to create electrical components like resistors, transistors and diodes that mimic the properties of familiar semiconductors. But according to Nongjian (NJ) Tao, a researcher at the Biodesign Institute at ASU, unique properties inherent in single molecules also may allow clever designers to produce novel devices whose behavior falls outside the performance observed in conventional electronics.

Stretching electrical conductance to the limit

Tempe, AZ | Posted on December 6th, 2011

In research appearing in today's issue of Nature Nanotechnology, Tao describes a method for mechanically controlling the geometry of a single molecule, situated in a junction between a pair of gold electrodes that form a simple circuit. The manipulations produced over tenfold increase in conductivity.

The unusual, often non-intuitive characteristics of single molecules may eventually be introduced into a broad range of microelectronics, suitable for applications including biological and chemical sensing electronic and mechanical devices.

Delicate molecular manipulations requiring patience and finesse are routine for Tao, whose research at Biodesign's Center for Bioelectronics and Biosensors has included work on molecular diodes, graphene behavior and molecular imaging techniques. Nevertheless, he was surprised at the outcome described in the current paper: "If you have a molecule attached to electrodes, it can stretch like a rubber band," he says. "If it gets longer, most people tend to think that the conductivity will decrease. A longer wire is less conductive than a shorter wire."

Indeed, diminishing conductivity through a molecule is commonly observed when the distance between the electrodes attached to its surface is increased and the molecule becomes elongated. But according to Tao, if you stretch the molecule enough, something unexpected happens: the conductance goes up - by a huge amount. "We see at least 10 times greater conductivity, simply by pulling the molecule."

As Tao explains, the intriguing result is a byproduct of the laws of quantum mechanics, which dictate the behavior of matter at the tiniest scales: "The conductivity of a single molecule is not simply inversely proportional to length. It depends on the energy level alignment."

In the metal leads of the electrodes, electrons can move about freely but when they come to an interface - in this case, a molecule that sits in the junction between electrodes - they have to overcome an energy barrier. The height of this energy barrier is critical to how readily electrons can pass through the molecule. By applying a mechanical force to the molecule, the barrier is lowered, improving conductance.

"Theoretically, people have thought of this as a possibility, but this is a demonstration that it really happens," Tao says. "If you stretch the molecule and geometrically increase the length, it energetically lowers the barrier so electrons can easily go through. If you think in optical terms, it becomes more transparent to electrons."

The reason for this has to do with a property known as force-induced resonant tunneling. This occurs when the molecular energy moves closer to the Fermi level of the electrodes - that is, toward the region of optimal conductance. (See figure 1) Thus, as the molecule is stretched, it causes a decrease in the tunneling energy barrier.

For the experiments, Tao's group used 1,4'-Benzenedithiol, the most widely studied entity for molecular electronics. Further experiments demonstrated that the transport of electrons through the molecule underwent a corresponding decrease as the distance between the electrodes was reduced, causing the molecule's geometry to shift from a stretched condition to a relaxed or squeezed state. "We have to do this thousands of times to be sure the effect is robust and reproducible."

In addition to the discovery's practical importance, the new data show close agreement with theoretical models of molecular conductance, which had often been at variance with experimental values, by orders of magnitude.

Tao stresses that single molecules are compelling candidates for a new types of electronic devices, precisely because they can exhibit very different properties from those observed in conventional semiconductors.

Microelectromechanical systems or MEMS are just one domain where the versatile properties of single molecules are likely to make their mark. These diminutive creations represent a $40 billion a year industry and include such innovations as optical switches, gyroscopes for cars, lab-on-chip biomedical applications and microelectronics for mobile devices.

"In the future, when people design devices using molecules, they will have a new toolbox they can use."

In addition to Tao's position as director of Biodesign's Center for Bioelectronics and Biosensors, he holds a professorship in the Ira A. Fulton Schools of Engineering, School of Electrical, Computer and Energy Engineering.

####

For more information, please click here

Contacts:
Richard Harth

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project