Home > Press > Electrochemistry controlled with a plasma electrode
Abstract:
Engineers at Case Western Reserve University have made an electrochemical cell that uses a plasma for an electrode, instead of solid pieces of metal.
The technology may open new pathways for battery and fuel cell design and manufacturing, making hydrogen fuel and synthesizing nanomaterials and polymers.
A description of the research is now published in the online edition of the Journal of the American Chemical Society at pubs.acs.org/doi/abs/10.1021/ja207547b.
"Plasmas formed at ambient conditions are normally sparks which are uncontrolled, unstable and destructive," said Mohan Sankaran, a chemical engineering professor and senior author of the paper. "We've developed a plasma source that is stable at atmospheric pressure and room temperature which allows us to study and control the transfer of electrons across the interface of a plasma and an electrolyte solution."
Sankaran worked with former students Carolyn Richmonds and Brandon Bartling, current students Megan Witzke and Seung Whan Lee and fellow chemical engineering professors Jesse Wainright and Chung-Chiun Liu.
The group used a traditional set up with their nontraditional electrode.
They filled an electrochemical cell, essentially two glass jars joined with a glass tube, with an electrolyte solution of potassium ferricyanide and potassium chloride.
For the cathode, argon gas was pumped through a stainless steel tube that was placed a short distance above the solution. A microplasma formed between the tube and the surface.
The anode was a piece of silver/silver chloride.
When a current was passed through the plasma, electrons reduced ferricyanide to ferrocyanide.
Monitoring with ultraviolet-visible spectrophotometry showed the solution was reduced at a relatively constant rate and that each ferrycyanide molecule was reduced to one ferrocyanide molecule.
As the current was raised, the rate of reduction increased. And testing at both electrodes showed no current was lost.
The researchers, however, found two drawbacks.
Only about one in 20 electrons transferred from the plasma was involved in the reduction reaction. They speculate the lost electrons were converting hydrogen in the water to hydrogen molecules, or that other reactions they were unable to monitor were taking place. They are setting up new tests to find out.
Additionally, the power needed to form the plasma and induce the electrochemical reactions was substantially higher than that required to induce the reaction with metal cathodes.
The researchers know their first model may not be as efficient as what most industries need, but the technology has potential to be used in a number of ways.
Working with Sankaran, Seung has scanned a plasma over a thin film to reduce metal cations to crystalline metal nanoparticles in a pattern.
"The goal is to produce nanostructures at the same small scale as can be done now with lithography in a vacuum, but in an open room," Seung said.
They are investigating whether the plasma electrode can replace traditional electrodes where they've come up short, from converting hydrogen in water to hydrogen gas on a large scale to reducing carbon dioxide to useful fuels and commodity chemicals such as ethanol.
The researchers are fine-tuning the process and testing for optimal combinations of electrode design and chemical reactions for different uses.
"This is a basic idea," Sankaran said. "We don't know where it will go."
####
For more information, please click here
Contacts:
Kevin Mayhood
216-368-4442
Copyright © Case Western Reserve University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |