Home > Press > Electrochemistry controlled with a plasma electrode
Abstract:
Engineers at Case Western Reserve University have made an electrochemical cell that uses a plasma for an electrode, instead of solid pieces of metal.
The technology may open new pathways for battery and fuel cell design and manufacturing, making hydrogen fuel and synthesizing nanomaterials and polymers.
A description of the research is now published in the online edition of the Journal of the American Chemical Society at pubs.acs.org/doi/abs/10.1021/ja207547b.
"Plasmas formed at ambient conditions are normally sparks which are uncontrolled, unstable and destructive," said Mohan Sankaran, a chemical engineering professor and senior author of the paper. "We've developed a plasma source that is stable at atmospheric pressure and room temperature which allows us to study and control the transfer of electrons across the interface of a plasma and an electrolyte solution."
Sankaran worked with former students Carolyn Richmonds and Brandon Bartling, current students Megan Witzke and Seung Whan Lee and fellow chemical engineering professors Jesse Wainright and Chung-Chiun Liu.
The group used a traditional set up with their nontraditional electrode.
They filled an electrochemical cell, essentially two glass jars joined with a glass tube, with an electrolyte solution of potassium ferricyanide and potassium chloride.
For the cathode, argon gas was pumped through a stainless steel tube that was placed a short distance above the solution. A microplasma formed between the tube and the surface.
The anode was a piece of silver/silver chloride.
When a current was passed through the plasma, electrons reduced ferricyanide to ferrocyanide.
Monitoring with ultraviolet-visible spectrophotometry showed the solution was reduced at a relatively constant rate and that each ferrycyanide molecule was reduced to one ferrocyanide molecule.
As the current was raised, the rate of reduction increased. And testing at both electrodes showed no current was lost.
The researchers, however, found two drawbacks.
Only about one in 20 electrons transferred from the plasma was involved in the reduction reaction. They speculate the lost electrons were converting hydrogen in the water to hydrogen molecules, or that other reactions they were unable to monitor were taking place. They are setting up new tests to find out.
Additionally, the power needed to form the plasma and induce the electrochemical reactions was substantially higher than that required to induce the reaction with metal cathodes.
The researchers know their first model may not be as efficient as what most industries need, but the technology has potential to be used in a number of ways.
Working with Sankaran, Seung has scanned a plasma over a thin film to reduce metal cations to crystalline metal nanoparticles in a pattern.
"The goal is to produce nanostructures at the same small scale as can be done now with lithography in a vacuum, but in an open room," Seung said.
They are investigating whether the plasma electrode can replace traditional electrodes where they've come up short, from converting hydrogen in water to hydrogen gas on a large scale to reducing carbon dioxide to useful fuels and commodity chemicals such as ethanol.
The researchers are fine-tuning the process and testing for optimal combinations of electrode design and chemical reactions for different uses.
"This is a basic idea," Sankaran said. "We don't know where it will go."
####
For more information, please click here
Contacts:
Kevin Mayhood
216-368-4442
Copyright © Case Western Reserve University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Chemistry
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Fuel Cells
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||