Home > Press > Nottingham scientists pioneer new method for nanoribbon production
![]() |
Abstract:
Research involving scientists from The University of Nottingham is pioneering a new method of studying and making molecules.
The work, reported in Nature Materials, could pave the way for the production of nanomaterials for use in a new generation of computers and data storage devices that are faster, smaller and more powerful.
The Nottingham research group, led by Dr Andrei Khlobystov in the University's School of Chemistry, specialise in the chemistry of nanomaterials and has been studying carbon nanotubes as containers for molecules and atoms.
Carbon nanotubes are remarkable nanostructures with a typical diameter of 1-2 nanometres, which is 80,000 times smaller than the thickness of a human hair. Over the past few years, the researchers have discovered that physical and chemical properties of molecules inserted into carbon nanotubes are very different to the properties of free molecules. This presents a powerful mechanism for manipulating the molecules, harnessing their functional properties, such as magnetic or optical, and for controlling their chemical reactivity.
The latest study is a collaboration between Dr Khlobystov's chemical nanoscientists, theoretical chemists based in the University's School of Chemistry and electron microscopists from Ulm University in German.
Working together, they have demonstrated that carbon nanotubes can be used as nanoscale chemical reactors and chemical reactions involving carbon and sulphur atoms held within a nanotube lead to the formation of atomically thin strips of carbon, known as graphene nanoribbon, decorated with sulphur atoms around the edge.
Dr Khlobystov said: "Graphene nanoribbons possess a wealth of interesting physical properties making them more suitable for applications in electronic and spintronic devices than the parent material graphene — the discovery of which attracted the Nobel Prize for Physics last year for University of Manchester scientists Professors Andre Geim and Konstantin Novoselov.
"Nanoribbons are very difficult to make but the Nottingham team's strategy of confining chemical reactions at the nanoscale sparks spontaneous formation of these remarkable structures. The team has also discovered that nanoribbons — far from being simple flat and linear structures — possess an unprecedented helical twist that changes over time, giving scientists a way of controlling physical properties of the nanoribbon, such as electrical conductivity."
Devices based on nanoribbons could potentially be used as nano-switches, nano-actuators and nano-transistors integrated in computers or data storage devices.
The research paper Self-assemby of a Sulphur-Terminated Graphene Nanoribbon within a Single-Walled Carbon Nanotube is featured in the Advance Online Publication section of the Nature Materials website. The full text of the paper can be accessed at www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3082.html
####
About University of Nottingham
The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘Europe’s greenest university’ in the UI GreenMetric World University Ranking, a league table of the world’s most environmentally-friendly higher education institutions, which ranked Nottingham second in the world overall.
The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.
More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.
More news from the University at: www.nottingham.ac.uk/news
For more information, please click here
Contacts:
Dr Andrei Khlobystov
+44 (0)115 951 3917
Emma Thorne
Media Relations Manager
Phone: +44 (0)115 951 5793
Copyright © University of Nottingham
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |