Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New battery design could give electric vehicles a jolt: Significant advance in battery architecture could be breakthrough for electric vehicles and grid storage

A sample of 'Cambridge crude' — a black, gooey substance that can power a highly efficient new type of battery. A prototype of the semi-solid flow battery is seen behind the flask.
Photo: Dominick Reuter
A sample of 'Cambridge crude' — a black, gooey substance that can power a highly efficient new type of battery. A prototype of the semi-solid flow battery is seen behind the flask.
Photo: Dominick Reuter

Abstract:
A radically new approach to the design of batteries, developed by researchers at MIT, could provide a lightweight and inexpensive alternative to existing batteries for electric vehicles and the power grid. The technology could even make "refueling" such batteries as quick and easy as pumping gas into a conventional car.

New battery design could give electric vehicles a jolt: Significant advance in battery architecture could be breakthrough for electric vehicles and grid storage

Cambridge, MA | Posted on June 6th, 2011

The new battery relies on an innovative architecture called a semi-solid flow cell, in which solid particles are suspended in a carrier liquid and pumped through the system. In this design, the battery's active components — the positive and negative electrodes, or cathodes and anodes — are composed of particles suspended in a liquid electrolyte. These two different suspensions are pumped through systems separated by a filter, such as a thin porous membrane.

The work was carried out by Mihai Duduta '10 and graduate student Bryan Ho, under the leadership of professors of materials science W. Craig Carter and Yet-Ming Chiang. It is described in a paper published May 20 in the journal Advanced Energy Materials. The paper was co-authored by visiting research scientist Pimpa Limthongkul '02, postdoc Vanessa Wood '10 and graduate student Victor Brunini '08.

One important characteristic of the new design is that it separates the two functions of the battery — storing energy until it is needed, and discharging that energy when it needs to be used — into separate physical structures. (In conventional batteries, the storage and discharge both take place in the same structure.) Separating these functions means that batteries can be designed more efficiently, Chiang says.

The new design should make it possible to reduce the size and the cost of a complete battery system, including all of its structural support and connectors, to about half the current levels. That dramatic reduction could be the key to making electric vehicles fully competitive with conventional gas- or diesel-powered vehicles, the researchers say.

Another potential advantage is that in vehicle applications, such a system would permit the possibility of simply "refueling" the battery by pumping out the liquid slurry and pumping in a fresh, fully charged replacement, or by swapping out the tanks like tires at a pit stop, while still preserving the option of simply recharging the existing material when time permits.

Flow batteries have existed for some time, but have used liquids with very low energy density (the amount of energy that can be stored in a given volume). Because of this, existing flow batteries take up much more space than fuel cells and require rapid pumping of their fluid, further reducing their efficiency.

The new semi-solid flow batteries pioneered by Chiang and colleagues overcome this limitation, providing a 10-fold improvement in energy density over present liquid flow-batteries, and lower-cost manufacturing than conventional lithium-ion batteries. Because the material has such a high energy density, it does not need to be pumped rapidly to deliver its power. "It kind of oozes," Chiang says. Because the suspensions look and flow like black goo and could end up used in place of petroleum for transportation, Carter says, "We call it ‘Cambridge crude.'"

The key insight by Chiang's team was that it would be possible to combine the basic structure of aqueous-flow batteries with the proven chemistry of lithium-ion batteries by reducing the batteries' solid materials to tiny particles that could be carried in a liquid suspension — similar to the way quicksand can flow like a liquid even though it consists mostly of solid particles. "We're using two proven technologies, and putting them together," Carter says.

In addition to potential applications in vehicles, the new battery system could be scaled up to very large sizes at low cost. This would make it particularly well-suited for large-scale electricity storage for utilities, potentially making intermittent, unpredictable sources such as wind and solar energy practical for powering the electric grid.

The team set out to "reinvent the rechargeable battery," Chiang says. But the device they came up with is potentially a whole family of new battery systems, because it's a design architecture that "is not linked to any particular chemistry." Chiang and his colleagues are now exploring different chemical combinations that could be used within the semi-solid flow system. "We'll figure out what can be practically developed today," Chiang says, "but as better materials come along, we can adapt them to this architecture."

Yury Gogotsi, Distinguished University Professor at Drexel University and director of Drexel's Nanotechnology Institute, says, "The demonstration of a semi-solid lithium-ion battery is a major breakthrough that shows that slurry-type active materials can be used for storing electrical energy." This advance, he says, "has tremendous importance for the future of energy production and storage."

Gogotsi cautions that making a practical, commercial version of such a battery will require research to find better cathode and anode materials and electrolytes, but adds, "I don't see fundamental problems that cannot be addressed — those are primarily engineering issues. Of course, developing working systems that can compete with currently available batteries in terms of cost and performance may take years."

Chiang, whose earlier insights on lithium-ion battery chemistries led to the 2001 founding of MIT spinoff A123 Systems, says the two technologies are complementary, and address different potential applications. For example, the new semi-solid flow batteries will probably never be suitable for smaller applications such as tools, or where short bursts of very high power are required — areas where A123's batteries excel.

The new technology is being licensed to a company called 24M Technologies, founded last summer by Chiang and Carter along with entrepreneur Throop Wilder, who is the company's president. The company has already raised more than $16 million in venture capital and federal research financing.

The development of the technology was partly funded by grants from the U.S. Department of Defense's Defense Advanced Research Projects Agency and Advanced Research Projects Agency - Energy (ARPA-E). Continuing research on the technology is taking place partly at 24M, where some recent MIT graduates who worked on the project are part of the team; at MIT, where professors Angela Belcher and Paula Hammond are co-investigators; and at Rutgers, with Professor Glenn Amatucci.

The target of the team's ongoing work, under a three-year ARPA-E grant awarded in September 2010, is to have, by the end of the grant period, "a fully-functioning, reduced-scale prototype system," Chiang says, ready to be engineered for production as a replacement for existing electric-car batteries.

####

For more information, please click here

Contacts:
David L. Chandler
MIT News Office
77 Massachusetts Avenue, Room 11-400
Cambridge, MA 02139-4307
Tel 617.253.2700
TTY 617.258.9344

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project