Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The First Non-Trivial Atom Circuit: Progress towards an Atom SQUID Closer Look at Cell Membrane Shows Cholesterol 'Keeping Order' A Measurement First: NIST 'Noise Thermometry' System Measures Boltzmann Constant Microreactors: Small Scale Chemistry Could Lead to Big Improvements f

Atom circuit: False color images of an "atom circuit" made of an ultracold sodium gas. Red denotes a greater density of atoms and traces the path of circulating atoms around the ring. A laser-based barrier can stop the flow of atoms around the circuit (left); without the barrier the atoms circulate around the ring (right).
Credit: JQI/NIST
Atom circuit: False color images of an "atom circuit" made of an ultracold sodium gas. Red denotes a greater density of atoms and traces the path of circulating atoms around the ring. A laser-based barrier can stop the flow of atoms around the circuit (left); without the barrier the atoms circulate around the ring (right).
Credit: JQI/NIST

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) and the University of Maryland (UM) have created the first nontrivial "atom circuit," a donut-shaped loop of ultracold gas atoms circulating in a current analogous to a ring of electrons in a superconducting wire. The circuit is "nontrivial" because it includes a circuit element—an adjustable barrier that controls the flow of atom current to specific allowed values. The newly published* work was done at the Joint Quantum Institute, a NIST/UM collaboration.

The First Non-Trivial Atom Circuit: Progress towards an Atom SQUID Closer Look at Cell Membrane Shows Cholesterol 'Keeping Order' A Measurement First: NIST 'Noise Thermometry' System Measures Boltzmann Constant Microreactors: Small Scale Chemistry Could Lead to Big Improvements f

Boulder, CO | Posted on March 31st, 2011

Ultracold gases, such as the Bose-Einstein condensate of sodium atoms in this experiment, are fluids that exhibit the unusual rules of the quantum world. Atomic quantum fluids show promise for constructing ultraprecise versions of sensors and other devices such as gyroscopes (which stabilize objects and aid in navigation). Super?uid helium circuits have already been used to detect rotation. Superconducting quantum interference devices (SQUIDs) use superconducting electrons in a loop to make highly sensitive measurements of magnetic fields. Researchers are striving to create an ultracold-gas version of a SQUID, which could detect rotation. Combined with ultracold atomic-gas analogs of other electronic devices and circuits, or "atomtronics" that have been envisioned, such as diodes and transistors, this work could set the stage for a new generation of ultracold-gas-based precision sensors.

To make their atom circuit, researchers created a long-lived persistent current—a frictionless flow of particles—in a Bose-Einstein condensate of sodium atoms held by an arrangement of lasers in a so-called optical trap that confines them to a toroidal, or donut, shape. Persistent flow—occurring for a record-high 40 seconds in this experiment—is a hallmark of superfluidity, the fluid analog of superconductivity.

The atom current does not circle the ring at just any velocity, but only at specified values, corresponding in this experiment to just a single quantum of angular momentum. A focused laser beam creates the circuit element—a barrier across one side of the ring. The barrier constitutes a tunable "weak link" that can turn off the current around the loop.

Superflow stops abruptly when the strength of the barrier is sufficiently high. Like water in a pinched garden hose, the atoms speed up in the vicinity of the barrier. But when the velocity reaches a critical value, the atoms encounter resistance to flow (viscosity) and the circulation stops, as there are no external forces to sustain it.

In atomic Bose-Einstein condensates, researchers have previously created Josephson junctions, a thin barrier separating two superfluid regions, in a single atomic trap. SQUIDs require a Josephson junction in a circuit. This present work represents the implementation of a complete atom circuit, containing a superfluid ring of current and a tunable weak link barrier. This is an important step toward realizing an atomic SQUID analog.

* A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill III, C. J. Lobb, K. Helmerson, W. D. Phillips and G. K. Campbell. Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. Physical Review Letters. Published online March 28, 2011.

####

For more information, please click here

Contacts:
Ben Stein

301-975-3097

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project