Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CNST Researchers Use Spin Waves to Measure Magnetic Polarization of Electrical Current

Abstract:
In the hard drive industry, the rapid growth of storage density has been propelled in part by developments in the sensors used to read the magnetic "bits" on the disk. Recently, the use of giant magnetoresistance (GMR) in such sensors, with current flowing in the plane of a multilayer film, has given way to the use of tunneling magnetoresistance, where current flows perpendicular to the plane of the multilayer through a tunnel barrier. To avoid the prohibitively high resistance of smaller tunnel junction sensors, future miniaturization of the sensors is projected to again require the use of GMR in all-metal multilayers, but with current flowing perpendicular to the plane. In a collaboration with researchers at Hitachi Global Storage Technologies, CNST researchers used their recently developed spin wave Doppler technique to measure the current polarization in novel (CoFe)1-xGex alloys being investigated for possible use in future disk drive read head sensors.* A critical parameter in determining the GMR of a multilayer sensor film is the current polarization, which is the degree to which the current carried in a magnetic metal is carried by electrons with spins either parallel or anti-parallel to the magnetization. The CNST researchers' measurement technique used nanostructured antennas to launch and detect spin waves in current-carrying (CoFe)1-xGex stripes, allowing them to measure shifts of a resonant transmission frequency that revealed the current-induced drift velocity of the magnetization and the current polarization. The results indicate polarization up to 95 % in these alloys. Although comparable polarization values have been found in materials that require annealing at prohibitively high temperatures, the (CoFe)1-xGex alloys are compatible with sensor manufacturing.

CNST Researchers Use Spin Waves to Measure Magnetic Polarization of Electrical Current

Boulder, CO | Posted on March 9th, 2011

Enhanced magnetization drift velocity and current polarization in (CoFe)1−xGex alloys, M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, Applied Physics Letters 98, 072510-072510-3 (2011).

####

For more information, please click here

Contacts:
Robert McMichael
301-975-5121

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project