Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Device May Revolutionize Computer Memory

Researchers have developed a single “unified” device that can perform both volatile and nonvolatile memory operation, with applications that could affect computer start times and energy efficiency for internet servers.
Researchers have developed a single “unified” device that can perform both volatile and nonvolatile memory operation, with applications that could affect computer start times and energy efficiency for internet servers.

Abstract:
Researchers from North Carolina State University have developed a new device that represents a significant advance for computer memory, making large-scale "server farms" more energy efficient and allowing computers to start more quickly.

by Matt Shipman

New Device May Revolutionize Computer Memory

Raleigh, NC | Posted on January 22nd, 2011

Traditionally, there are two types of computer memory devices. Slow memory devices are used in persistent data storage technologies such as flash drives. They allow us to save information for extended periods of time, and are therefore called nonvolatile devices. Fast memory devices allow our computers to operate quickly, but aren't able to save data when the computers are turned off. The necessity for a constant source of power makes them volatile devices.

But now a research team from NC State has developed a single "unified" device that can perform both volatile and nonvolatile memory operation and may be used in the main memory.

"We've invented a new device that may revolutionize computer memory," says Dr. Paul Franzon, a professor of electrical and computer engineering at NC State and co-author of a paper describing the research. "Our device is called a double floating-gate field effect transistor (FET). Existing nonvolatile memory used in data storage devices utilizes a single floating gate, which stores charge in the floating gate to signify a 1 or 0 in the device - or one ‘bit' of information. By using two floating gates, the device can store a bit in a nonvolatile mode, and/or it can store a bit in a fast, volatile mode - like the normal main memory on your computer."

The double floating-gate FET could have a significant impact on a number of computer problems. For example, it would allow computers to start immediately, because the computer wouldn't have to retrieve start-up data from its hard drive - the data could be stored in its main memory.

The new device would also allow "power proportional computing." For example, Web server farms, such as those used by Google, consume an enormous amount of power - even when there are low levels of user activity - in part because the server farms can't turn off the power without affecting their main memory.

"The double floating-gate FET would help solve this problem," Franzon says, "because data could be stored quickly in nonvolatile memory - and retrieved just as quickly. This would allow portions of the server memory to be turned off during periods of low use without affecting performance."

Franzon also notes that the research team has investigated questions about this technology's reliability, and that they think the device "can have a very long lifetime, when it comes to storing data in the volatile mode."

The paper, "Computing with Novel Floating-Gate Devices," will be published Feb. 10 in IEEE's Computer. The paper was authored by Franzon; former NC State Ph.D. student Daniel Schinke; former NC State master's student Mihir Shiveshwarkar; and Dr. Neil Di Spigna, a research assistant professor at NC State. The research was funded by the National Science Foundation.

NC State's Department of Electrical and Computer Engineering is part of the university's College of Engineering.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Paul Franzon
919.515.7351

Dr. Neil Di Spigna
919.515.8939

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project