Home > Press > Nanoparticle Blocks Key Molecule Involved in Spread
Abstract:
Investigators at the University of Michigan, led by Donna Livant, have shown that attaching the PHSCN peptide to a spherical polymeric nanoparticle increases the drug's potency by as much as 6,700 fold compared to the free drug in a test designed to measure breast cancer cell invasiveness.
Ongoing clinical trials have shown that a peptide known as PHSCN can slow or prevent the spread of metastatic breast cancer in over a third of patients treated with the drug. This drug works by binding to an activated receptor found on the surface of breast tumor cells but not normal cells.
Now, investigators at the University of Michigan, led by Donna Livant, have shown that attaching the PHSCN peptide to a spherical polymeric nanoparticle increases the drug's potency by as much as 6,700 fold compared to the free drug in a test designed to measure breast cancer cell invasiveness. The researchers reported their findings in the journal Breast Cancer Research and Treatment.
To improve the promising performance of PHSCN, Dr. Livant and her colleagues attached eight molecules of this peptide to a polymer nanoparticle known as a dendrimer. Tests using cultured breast tumor cells showed that this construct was far more potent at preventing the invasion of those cells into an artificial membrane. Further tests in mice showed that the dendrimer-linked peptide reduced the ability of metastatic breast cancer cells to colonize the lungs of animals receiving this nanoscale construct by 3- to 5-fold compared to when animals received free PHSCN.
This work is detailed in a paper titled, "The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation." An abstract of this paper is available at the journal's website.
View abstract www.springerlink.com/content/n4j06661j17660n2/
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||