Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Printed Electronics - Predictions for 2011

Abstract:
In this article, we examine what to expect for 2011. To do that, we must understand the spectacular successes of the recent past as well as the failures. This has often been an industry with poor business planning and marketing. For example, in e-readers, Plastic Logic belatedly realised it could not meet Apple and Amazon head on and it said it would create a professional sector but such a niche may never exist. It failed to launch a product anyway. Those developing printed organic and inorganic flexible solar cells, most of which had life of no more than five years, obsessed about replacing power stations by meeting "grid parity" efficiency when the potential lay in consumer goods, military, healthcare and media.

By Raghu Das, CEO, IDTechEx

Printed Electronics - Predictions for 2011

Cambridge, UK | Posted on January 5th, 2011

Lessons from failure

Frequently, participants tried to run before they could walk or at least chose objectives that were too ambitious for the level of investment available. For example, Microemissive Displays, OLED-T and many other Organic Light Emitting Display companies are no more. Those making printed antennas and keyboards prospered. Some have simply failed to meet the price-performance points necessary for market entry. For example, no one has taken a meaningful order for the long promised printed organic transistors, despite transistors being the engine of most electronics. That has had a severe knock on effect. For example, the printed organic memory of Thin Film Electronics AB and many printed sensors cannot fulfil their primary market potential without them.

Lessons from success

There are important lessons from the recent successes too. The Amazon Kindle™ e-reader is the antidote to phones and computers we cannot read in sunshine. It is partly printed with an excellent route to further weight and cost reduction using more printing. It replaces books. The Apple i-Pad™ is not killing the Kindle because it is not simply an e-reader and it is in color. You need a spectacularly better product in the eyes of potential users to compete effectively with either of these powerful global brands with their unsurpassed routes to market. An example would be a color e-readers tightly rolled into your mobile phone but no such product is in prospect for 2011.

Historical event - replacing silicon chips

Certain small orders for printed and partly printed electronics in 2010 were of deep significance. For example, the Kovio order for disposable electronic train tickets in Los Angeles saw formidable printed nano silicon electronics in the form of over 1000 transistors printed by ink jet and screen printing onto stainless steel foil. Being compatible with the world's most popular RFID specification ISO 14443 which was designed for silicon chips, this analog-digital circuit was a tour de force announcing to the world that a huge variety of the simpler integrated circuits can
now be replaced by lower cost, more flexible and more robust printing albeit on stainless steel foil because of the high temperature anneal currently required.

Promotional

Equally significant was Dai Nippon Printing in Japan taking its first orders for multifunctional posters on the Tokyo Metro incorporating printed animated OLED and ac electroluminescent technology powered by printed organic photovoltaics. In addition, trials by Toppan Forms in Japan of interactive posters have been successful. These involved sound, activated by touching, printed ac electroluminescent and electrophoretic displays and printed organic photovoltaics for power. At a stroke, the world's existing posters, packaging and point of display material are rendered boring, relatively ineffective and an embarrassment. It is equivalent to the arrival of television: if you just make radios watch out.

Military

2010 also saw the US Air Force committing very serious money to vehicles made possible by flexible photovoltaics, notably unmanned upper atmosphere surveillance aircraft and dirigibles covered with the stuff. One order exceeded $500 million. The benefits include light weight and flexibility. You do not put glass sheets on a balloon.

Healthcare

Much smaller sums were committed to buying printed electronic products for healthcare, with ongoing business in electronic tamper evidence and entirely printed electric skin patches. However, in the background, a great deal of work was going on to develop electronic healthcare disposables for testing and drug administration.

Forecasts

All of which brings us to 2011. Many companies that have got the message of starting with the easier printed electronics will launch simple devices based on printed diodes and conductive patterns etc. The old idea of printing a transparent conductive layer not with expensive, clever chemicals but with fine metal patterns will re-emerge and gain first major orders. Simple ink stripe RFID using low cost printed metals will gain market share. Printable copper inks will start to sell well. Novacentrix Pulseforge ™ which anneals high temperature electronic inks on low temperature substrates will be widely deployed.

Expect one of the new electric cars to incorporate largely printed ceiling and dashboard control clusters saving 10 to 40% of cost, weight and space in 2011 and improving reliability and weather proofing. Less certain is whether the lowest cost printed displays, the electrochromic ones, will overcome barriers to major market entry. Some of our clients cite unappealing appearance and lack of low cost drive circuits. The limited life is not a problem for most envisaged applications.

Of course, life is of great importance in many potential applications of printed electronics and the 2-3 years of printed organic photovoltaics and five years for DSSC photovoltaics will be inadequate in some cases. For example car companies and the military demand 15 years and 20 years are needed for photovoltaics on houses or ships. Enter flexible printed copper indium gallium diselenide CIGS photovoltaics where Nanosolar and maybe others will make first major deliveries in 2011. Lifetime of these initial products are unclear as yet but long life is in prospect. Equally desirable is transparent flexible printed electronics demanded by all market sectors. The kingpins here will be the commercialisation of transparent photovoltaics, transistor circuits and batteries but, unfortunately, these are unlikely to be in major production by the end of 2011.

The tiny number of imaginative product designers familiar with printed electronics will continue to spring surprises. Expect yet more animated and interactive paper magazines in the tradition of the E-ink Esquire edition in 2008 and the color LCD with sound in an edition of Entertainment Age in 2009. We shall certainly see printed electronics in more toys, novelties, apparel and healthcare disposables.

The annual IDTechEx event Printed Electronics Europe - which will be held in Dusseldorf, Germany on April 5-6, will cover all these topics. In particular, the event features Demonstration Street - where you can see working printed electronics products in action. Register now and save with the early bird rate - see www.IDTechEx.com/peEurope.

####

For more information, please click here

Contacts:
Cara Harrington

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project