Home > Press > Good News For Computer Users: Future Processor And Memory Functions To Be Significantly More Efficient; Offer Higher Energy Savings
Abstract:
Proceedings of the IEEE Cites Potential for Spin-Based Technology to Replace Static RAM
According to research reported in the special issue update of Proceedings of the IEEE (www.ieee.org/proceedings) on Nanoelectronics applications, computer users will be elated to learn that efficient new systems to process information and sustain memory function are on the horizon. Many of these are new devices and forward-thinking technologies proposed to perform either the processor function or the memory function, and in some instances a universal device to perform both functions. Proceedings of the IEEE is the world's most highly-cited general-interest journal in electrical engineering and computer science since 1913.
This Nanoelectronics update issue, published by the IEEE, the world's largest technical professional association, presents 16 research papers reflecting a two-phased approach to bringing about change in both processing information and sustaining memory function. Phase one papers address extending chip functionality beyond what is thought possible today, while phase two explores ways to create a new, multifunctional and scalable platform technology such as an all spin-based logic for both processor and memory tasks.
An exciting albeit still controversial aspect of the idea of employing spin-based technology to replace RAM is described in "Spin-transistor Electronics: An Overview and Outlook" by S. Sugahara and J. Nitta, which makes a strong case for using spin instead of charge as a building block for novel integrated circuits that never need refreshing.
"Spin devices could also be used to realize non-volatile memory and reconfigurable output characteristics that are very useful and offer suitable functionalities for new integrated circuit architectures that are inaccessible to ordinary transistor circuits," explains James Hutchby, guest editor for the Nanotechnology Special Issue, as he recently commented on the current status and outlook for spin transistors.
In "In Quest of the Next Switch" by T. Theis and P. Solomon, an exploration is presented of options for reducing energy dissipation characteristic of semiconductors. The article also provides important insight into the search to replace the silicon Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and Complementary (CMOS) gate as the basic unit logic device. The potential for Graphene to play an important role in processor and memory functions for new "beyond CMOS devices" is also addressed in this issue.
In "Graphene for CMOS and Beyond CMOS Applications" by S.K. Banerjee et al., several unique properties of graphene are summarized including its very high mobility and linear band structure while also demonstrating that the unique properties of graphene can lead to discovery and development of important and new "Beyond CMOS" devices.
"While it could be many years before we see any of these graphene applications fully realized, the discovery of graphene and now the potential we see for it and have illustrated in this article offers an unparalleled opportunity for scientists to investigate these possibilities," says Hutchby.
"The overriding opportunity these research papers offer to the Nanoelectronics research community is a chance to develop a new concept and its enabling technology capable of sustaining information processing (including memory) functional scaling beyond that which is attainable with scaled Complimentary Metal Oxide Semi-conductor (CMOS)," further explains Hutchby. "And this new concept could be based on use of a new ‘token‘(e.g. electronic spin) to replace charge as the means to represent a bit of information."
To receive a copy of this Proceedings of the IEEE Nanoelectronics Network Applications issue, to read a specific paper or to coordinate an interview with a guest editor please contact Lauren Russ at or visit the website at ieeexplore.ieee.org or the journal's web site at www.ieee.org/proceedings.
####
About IEEE
IEEE, the world’s largest technical professional association, is dedicated to advancing technology for the benefit of humanity. Through its highly cited publications, conferences, technology standards, and professional and educational activities, IEEE is the trusted voice on a wide variety of areas ranging from aerospace systems, computers and telecommunications to biomedical engineering, electric power and consumer electronics.
Learn more at www.ieee.org.
About Proceedings of the IEEE
Founded in 1913, (originally as Proceedings of the IRE), Proceedings of the IEEE is the most highly-cited general –interest journal in electrical engineering and computer science. This journal provides the most in-depth tutorial and review coverage of the technical developments that shape our world, using guest authors and editors from the best research facilities, leading edge corporations and enlightened universities around the world. For more information on Proceedings of the IEEE and the latest ideas and innovative technologies, visit www.ieee.org/proceedings.
For more information, please click here
Contacts:
Lauren Russ
Copyright © IEEE
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Spin photonics to move forward with new anapole probe November 4th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||