Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle Targets Brain Tumors

Abstract:
Nine years ago, scientists at Cedars-Sinai's Maxine Dunitz Neurosurgical Institute detected a subtle shift occurring in the molecular makeup of the most aggressive type of brain tumors, glioblastoma multiforme. With further study, they found that a specific protein called laminin-411 plays a major role in a tumor's ability to build new blood vessels to support its growth and spread. But technology did not exist then to block this protein.

Nanoparticle Targets Brain Tumors

Bethesda, MD | Posted on December 17th, 2010

Now, employing nanoparticles as a drug delivery agent, the research team has created a "nanobioconjugate" drug that may be given by intravenous injection and carried in the blood to target the brain tumor. This work, which was led by Julia Ljubimova of the Cedars-Sinai Medical Center in Los Angeles, was published in the Proceedings of the National Academy of Sciences. Dr. Ljubimova is the principal investigator of one of 12 Cancer Nanotechnology Platform Partnerships funded by the National Cancer Institute Alliance for Nanotechnology in Cancer.

The new nanobioconjugate comprises several key components, each with a role in getting a powerful antitumor agent into brain tumors. The nanoparticle that makes up the bulk of this construct is made of a biodegradable polymer known as polymalic acid that is produced by slime molds and that will self-assemble into nanoparticles. The researchers attached to the polymer backbone a variety molecules, each with its own role to play in getting this construct to brain tumors and killing them. One set of molecules enables the resulting nanoparticle to cross the blood-brain barrier, while another helps the nanoparticle enter the cell. A third set of molecules cause tiny compartments inside cells, known as endosomes, to rupture, releasing the nanoparticle into the cell's cytoplasm. Finally, two different antisense oligonucleotides - the actual anticancer agents - block the production of laminin-411. These antisense agents are not toxic to non-malignant cells.

Studies in lab mice show that this system allows large amounts of antitumor drug to accumulate in tumors, significantly slowing the growth of new vessels and the tumors themselves. Tumors in animals treated with the drug were 90 percent smaller than those in a control group. "This nanobioconjugate is different from earlier nanomedicine drugs because it delivers and releases antitumor drugs within tumor cells, not just at the site of a tumor," said Dr. Ljubimova.

"Based on our studies, this nanoconjugate appears to be a safe and efficient delivery platform that also may be appropriate in the treatment of degenerative brain conditions and a wide array of other disorders. It is harmlessly degraded to carbon dioxide and water, nontoxic to normal tissue, and, unlike some drugs, it is non-immunogenic, meaning that it does not stimulate the immune system to the point of causing allergic reactions that can range from mild coughs or rashes to sudden, life-threatening symptoms," Dr. Ljubimova explained. She and her colleagues have formed the company Arrogene to develop this construct for clinical use.

This work, which was funded in part by the National Cancer Institute, is detailed in a paper titled "Inhibition of brain tumor growth by intravenous poly (â-L-malic acid) nanobioconjugate with pH-dependent drug release." An abstract of this paper is available at the journal's website.

View abstract at www.pnas.org/content/107/42/18143

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project