Home > Press > World first to provide building blocks for new nano devices
![]() |
Abstract:
Scientists at The University of Nottingham have made a major breakthrough that could help shape the future of nanotechnology, by demonstrating for the first time that 3-D molecular structures can be built on a surface.
The discovery could prove a significant step forward towards the development of new nano devices such as cutting-edge optical and electronic technologies and even molecular computers.
In a paper published in the prestigious journal Nature Chemistry, the team of chemists and physicists at Nottingham have shown that by introducing a ‘guest' molecule they can build molecules upwards from a surface rather than just 2-D formations previously achieved.
A natural biological process known as ‘self-assembly' meant that once the scientists introduced other molecules on to a surface their host then spontaneously arranged them into a rational 3-D structure.
Professor Neil Champness said: "It is the molecular equivalent of throwing a pile of bricks up into the air and then as they come down again they spontaneously build a house.
"Until now this has only been achievable in 2-D, so to continue the analogy the molecular ‘bricks' would only form a path or a patio but our breakthrough now means that we can start to build in the third dimension. It's a significant step forward to nanotechnology."
Previously, scientists have employed a technique found in nature of using hydrogen bonds to hold DNA together to build two-dimensional molecular structure.
The new process involved introducing a guest molecule — in this case a ‘buckyball' or C60 — on to a surface patterned by an array of tetracarboxylic acid molecules. The spherical shape of the buckyballs means they sit above the surface of the molecule and encourage other molecules to form around them. It offers scientists a completely new and controlled way of building up additional layers on the surface of the molecule.
The work is the culmination of four years' of research led by Professors Champness and Beton from the School of Chemistry and the School of Physics and Astronomy, which has been funded with a total of £3.5 million from the Engineering and Physical Sciences Research Council.
The research paper is the second significant breakthrough to be reported by the team in recent weeks. In September, a paper in Nature Communications revealed they had demonstrated for the first time the way in which an irregularly shaped molecule is adsorbed on a surface. It represents a step towards being able to harness the potential of these molecules, which have extremely useful properties, by organising them to form structures. They could offer a way of building new data storage devices that are orders of magnitude smaller than their existing silicon-based counterparts.
####
About University of Nottingham
The University of Nottingham, described by The Times as “the nearest Britain has to a truly global university”, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings.
The University is committed to providing a truly international education for its 39,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.
More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power.
The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.
For more information, please click here
Contacts:
Professor Neil Champness on +44 (0)115 951 3505,
Emma Thorne - Media Relations Manager
Email:
Phone: +44 (0)115 951 5793
Copyright © University of Nottingham
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |