Home > Press > Nanomaterial for medicine and energy
A new type of nanoparticle resembling the six-pointed Star of David (Magen David) that is the symbol on the flag of Israel has been discovered by researchers at the Hebrew University of Jerusalem. |
Abstract:
New nanomaterial, shaped like Stars of David, discovered at Hebrew University, could open way for medical, clean energy applications
A new type of nanoparticle resembling the six-pointed Star of David (Magen David) that is the symbol on the flag of Israel has been discovered by researchers at the Hebrew University of Jerusalem. The discovery, the researchers say, may lead to new ways for sensing of glucose in diagnosing diabetes or provide a catalyst to capture the sun's energy and turn it into clean fuel.
Their work, they further believe, greatly contributes to understanding how hybrid nanoparticles form. Hybrid nanoparticles are systems which combine two or more different materials on the same particle in which the combination provides multi-functionality to the particle. The discovery of the Hebrew University scientists is described in an article published now online and in the October 2010 issue of the journal Nature Materials.
The new Star of David shaped particles, with sizes 10,000 times smaller than the width of a human hair, were discovered by the research group of Uri Banin, the Alfred and Erica Larisch Memorial Professor and the director of the Harvey M. Kruger Family Center for Nanoscience and Nanotechnology at the Hebrew University.
The researchers have been working to try and develop new nanoparticles made of two kinds of materials joined together. So far, scientists have only been aware of nanoparticles in which one material encapsulates the other (resembling an egg and a yolk), or where an island of one material forms on the other (much like the head of the match on a match-stick). This was not the case with the Star of David shapes.
Dr. Janet Macdonald, a postdoctoral fellow in Banin's group, worked on synthesizing nanoparticles combining copper sulfide, a common mineral with semiconducting properties, and ruthenium, a metal with exceptional chemical-catalytic properties. Instead of the expected ruthenium islands on the seed particles, what she saw in the pictures from the electron microscope were particles with surprising striped patterns and Star of David shapes.
What followed was the difficult task of figuring out the three-dimensional shape of the particles that could give such images. The mystery took months to solve and confirm by careful analysis and with the aid of Dr. Maya Bar Sadan and Dr. Lothar Houben of the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons in Juelich, Germany.
The researchers generated a three-dimensional image of the tiny nanoparticles using a powerful electron microscope and found that the Stars of David are, remarkably, "nano-cages." The particles are nano-sized, hexagonal crystals, each with a tiny metal frame wrapping around and encasing them just like a bird's cage, but 100 million times smaller. Because the nano-cage is hexagonal, when looking at pictures of them from above, they appear as Stars of David. No one had ever seen hybrid nanoparticles form with such a cage structure before.
Exploration into the possible applications for the nano Stars of David has just begun, and already they have shown that they are not just beautiful; the composition and the unique cage shape makes them useful. The first application demonstrated was in the use of the nano-cages as sensors. The researchers coated an electrode with the Star of David nano-cages and proved that it is possible to detect with the new device minute quantities of hydrogen peroxide. Uncaged copper sulfide particles alone were not sensitive, and remarkably, the addition of the metal frame boosted the electrical signal of detection 200 fold. Sensing peroxide is a first step towards new and better sensors for glucose, which has important medical implications, including for diabetes diagnostics.
But Banin and his researchers have wider aspirations for the nano Stars of David: testing these materials as sensors for other medical and environmental applications, and exploring if they can be used as photocatalysts for using sunlight to make "green fuel."
####
For more information, please click here
Copyright © Hebrew University of Jerusalem
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Harvey M. Kruger Family Center for Nanoscience and Nanotechnology
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||