Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Toning down cancer’s aggressiveness

Prof. Mansoor Amiji is working on research that would battle cancer by making tumor cells less aggressive. Photo by Lauren McFalls.
Prof. Mansoor Amiji is working on research that would battle cancer by making tumor cells less aggressive. Photo by Lauren McFalls.

Abstract:
The researchers are working on using nanoparticles, engineered for drug delivery, to reverse the tumor cell clusters' resistance to anti-cancer therapies.

Toning down cancer’s aggressiveness

Boston, MA | Posted on November 3rd, 2010

The fight against some cancers could depend on using nanotechnology to trick tumor cells into feeling well fed.

Mansoor Amiji, Distinguished Professor of Pharmaceutical Sciences at Northeastern University, believes tumor cells—like people—become more aggressive in pursuit of nourishment when they're "hungry." He theorizes that clusters of cancer cells deep within a tumor, where they receive limited oxygen and other nutrients, have higher stress levels and are more aggressive in fighting off chemotherapy.

Working from this theory, Amiji, who chairs the Department of Pharmaceutical Sciences in the School of Pharmacy within the Bouvé College of Health Sciences, will collaborate with researchers at Northeastern and Massachusetts General Hospital to explore innovative drug delivery and gene-silencing strategies to target these cancers. Assistant Professor of Chemical Engineering Rebecca Carrier and Matthews Distinguished University Professor of Chemistry and Chemical Biology Robert Hanson are Amiji's Northeastern collaborators.

The researchers are working on using nanoparticles, engineered for drug delivery, to reverse the tumor cell clusters' resistance to anti-cancer therapies. The nanoparticles would permeate the parts of tumors where the aggressive cells live, carrying RNA molecules that would block messages from disease-causing genes. Cutting off that communication would prevent the tumor cells from developing certain proteins that make them aggressive.

Amiji predicts suppressing their aggression—or "hunger"—could be a major breakthrough in treating highly aggressive ovarian and lung cancers.

"When living in this (hostile) environment, the threshold for killing tumor cells is much higher," Amiji said. "We want the threshold to be minimal so low doses of chemotherapy will kill those cells and make the treatment safer."

Relapse is common for ovarian and lung cancers, and drugs used in the first round of treatment often become ineffective in future treatments, Amiji explained. As a result, a doctor's primary recourse is to create cocktails of multiple drugs and increase the dosages. But Amiji hopes his new approach can replace this current treatment method.

Amiji's project, which advances Northeastern's leadership in use-inspired, interdisciplinary health research, is funded by a five-year, $2.32 million Cancer Nanotechnology Platform Partnership grant from the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer program. Through this grant, Amiji and his team will also develop a library of target-specific nanoparticles they can screen and select from on a case-by-case basis when treating various forms of cancer.

Amiji pointed to Northeastern's tremendous momentum in nanotechnology research. The NCI recently designated Northeastern a Center of Cancer Nanotechnology Excellence with a $13.5 million award. Northeastern's Integrative Graduate Education and Research Traineeship (IGERT) nanomedicine program recently received a $3.1 million grant from the National Science Foundation to continue its success in educating the next generation of scientists and technologists in nanomedicine.

The University also signed an agreement in September with federal health researchers to advance research and guidance for occupational safety and health in nanotechnology.

"We have created a coherent nucleus of research and education in translational nanomedicine at Northeastern," Amiji said.

####

Contacts:
Greg St.Martin
617-373-5463

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project