Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Nano Techniques Integrate Electron Gas-Producing Oxides With Silicon

University of Wisconsin-Madison Materials Science and Engineering Professor Chang-Beom Eom
University of Wisconsin-Madison Materials Science and Engineering Professor Chang-Beom Eom

Abstract:
In cold weather, many children can't resist breathing onto a window and writing in the condensation. Now imagine the window as an electronic device platform, the condensation as a special conductive gas, and the letters as lines of nanowires.

A team led by University of Wisconsin-Madison Materials Science and Engineering Professor Chang-Beom Eom has demonstrated methods to harness essentially this concept for broad applications in nanoelectronic devices, such as next-generation memory or tiny transistors. The discoveries were published Tuesday, Oct. 19 by the journal Nature Communications.

New Nano Techniques Integrate Electron Gas-Producing Oxides With Silicon

Madison, WI | Posted on October 20th, 2010

Eom's team has developed techniques to produce structures based on electronic oxides that can be integrated on a silicon substrate-the most common electronic device platform.

"The structures we have developed, as well as other oxide-based electronic devices, are likely to be very important in nanoelectronic applications, when integrated with silicon," Eom says.

The term "oxide" refers to a compound with oxygen as a fundamental element. Oxides include millions of compounds, each with unique properties that could be valuable in electronics and nanoelectronics.

Usually, oxide materials cannot be grown on silicon because oxides and silicon have different, incompatible crystal structures. Eom's technique combines single-crystal expitaxy, postannealing and etching to create a process that permits the oxide structure to reside on silicon-a significant accomplishment that solves a very complex challenge.

The new process allows the team to form a structure that puts three-atom-thick layers of lanthanum-aluminum-oxide in contact with strontium-titanium-oxide and then put the entire structure on top of a silicon substrate.

These two oxides are important because an "electron gas" forms at the interface of their layers, and a scanning probe microscope can make this gas layer conductive. The tip of the microscope is dragged along the surface with nanometer-scale accuracy, leaving behind a pattern of electrons that make the one-nanometer-thick gas layer. Using the tip, Eom's team can "draw" lines of these electrons and form conducting nanowires. The researchers also can "erase" those lines to take away conductivity in a region of the gas.

In order to integrate the oxides on silicon, the crystals must have a low level of defects, and researchers must have atomic control of the interface. More specifically, the top layer of strontium-titanium-oxide has to be totally pure and match up with a totally pure layer of lanthanum-oxide at the bottom of the lanthanum-aluminum-oxide; otherwise, the gas layer won't form between the oxide layers. Finally, the entire structure has been tuned to be compatible with the
underlying silicon.

Eom's team includes UW-Madison Physics Professor Mark Rzchowski, postdocs and graduate students in materials science and engineering and physics, as well as collaborators from the University of Michigan, Ann Arbor, and the University of Pittsburgh, Pennsylvania. The National Science Foundation supports the research.

####

For more information, please click here

Contacts:
Sandra Knisely
(608) 265-8592


Chang-Beom Eom
(608) 263-6305




Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project