Home > Press > New DuPont Encapsulant And NSG Thin Glass Enable Fujipream To Build World's Thinnest Crystalline Silicon Solar Panel
Abstract:
Modified Ionomer Sheet Provides Superior Backsheet Adhesion & Lamination Cycle Time for Thin Film Photovoltaic Modules
DuPont Kabushiki Kaisha and Fujipream Corporation have successfully developed a new thin crystalline silicon (c-Si) glass-glass photovoltaic module that is 25 percent lighter in weight (excluding the frame) compared with traditional c-Si modules using standard solar grade front glass. The new Fujipream module incorporates new innovative material technology from DuPont Photovoltaic Solutions and NSG Group to provide the strength, rigidity, resistance to impact and weatherability required to meet international module standards. The result is the world's thinnest commercially available glass-glass c-Si photovoltaic module.
A key innovation is the use of DuPont PV5300 Series ionomer-based encapsulant sheets that replace traditional EVA-based encapsulants. The resulting laminate strength enables the thinner module to pass required load and hail tests, and thin glass replaces standard solar grade front glass and backsheet to provide a new lighter-weight glass-glass laminate structure. Two sheets of the DuPont encapsulant surround and protect the module's sensitive silicon cells and circuitry, which is sandwiched between two 1.1-mm sheets of thin glass.
"Fujipream is taking advantage of DuPont PV5300 Series encapsulant to enhance overall module strength and rigidity," explains Jun Koishikawa, development manager - DuPont Packaging & Industrial Polymers. "The ionomer sheet's adhesion to glass is well-established from years of related experience in laminated structural glass. The high shear coupling of the glass layers via use of the ionomer encapsulant creates a composite-like module structure with strength comparable to a single piece of thicker glass.
The vacuum-laminated photovoltaic module's extra strength lets Fujipream meet required module impact resistance and structural loading requirements using 31 percent less glass than traditional designs, which relied on a 3.2-mm glass topsheet and polymeric backsheet.
Minoru Amoh, president - DuPont Kabushiki Kaisha in Japan, sees the Fujipream module as a natural result of DuPont applying the power of its integrated science to help deliver clean solar power. "DuPont is strategically focused on a thriving photovoltaic industry," said Amoh. "We are applying our market-driven science to offer products and technologies that can transform the sun's potential into clean energy, and delivering growth through our market-leading position in materials. We expect to achieve $1B in revenue from sales into the photovoltaic market in 2010 and $2B by 2014."
####
For more information, please click here
Copyright © DuPont
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||