Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First industrial-scale MOF synthesis

Nanocubes act as a storage medium for hydrogen: A possible storage medium for hydrogen are nanocubes made of metal organic frameworks (MOFs). Photo: BASF – The Chemical Company, 2010
Nanocubes act as a storage medium for hydrogen: A possible storage medium for hydrogen are nanocubes made of metal organic frameworks (MOFs). Photo: BASF – The Chemical Company, 2010

Abstract:
* First industrial-scale synthesis of metal-organic frameworks
* New opportunities for gas storage for alternative propulsion systems

First industrial-scale MOF synthesis

Ludwigshafen, Germany | Posted on October 5th, 2010

Natural gas-powered vehicles may soon be able to travel double the distance on a single tank - due to metal organic frameworks (MOFs). BASF research scientists have developed an innovative method for solvent-free industrial-scale manufacture of those materials for better gas storage. MOFs produced by the new method are currently being trialed for natural gas storage in heavy duty vehicles.

With their special structure and large surface area, MOFs open up new opportunities for alternative propulsion systems, in catalysis, as nanoreactors, and in drug delivery, making them hugely interesting both for industry and university research. "This substance class opens up new areas of applications in material science. We are delighted at this significant advance in industrial-scale production, which is a crucial requirement for the commercial use of these fascinating materials," said Dr. Friedrich Seitz, head of Research Chemicals BASF.

BASF has been working toward industrial-scale synthesis of metal-organic frameworks for the past 10 years. MOFs are highly crystalline structures with nanometer-sized pores that allow them to store hydrogen and other high-energy gases. The larger specific surface area and high porosity on the nanometer scale enable MOFs to hold relatively large amounts of these gases. The pores are adjustable in terms of size and polarity and so can be fine-tuned for specific applications.

Used as storage materials in the natural gas tanks of municipal utility vehicles MOFs offer a docking area for gas molecules, which can be stored in higher densities as a result. The larger gas quantity in the tank increases the vehicle's range. An advantage of the production method developed by BASF is that it uses no organic solvents. The simple method gives a higher material yield from an aqueous medium and is suitable for existing BASF production plants.

MOFs were discovered toward the end of the 1990s by US chemist Omar M. Yaghi (University of Michigan, Ann Arbor, now UCLA, Los Angeles). BASF researchers contacted him after reading his 1999 article in the science journal Nature and have been collaborating with Professor Yaghi ever since on the synthesis of metal-organic frameworks. The aim is to develop MOFs with the largest possible surface area and storage density. Professor Yaghi recently succeeded in synthesizing MOF-210, a zinc carboxylate with a surface area of more than 10,000 square meters per gram of material. For comparison: the highest surface areas of previous MOFs averaged 5,000 square meters per gram.

####

About BASF
BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics and performance products to agricultural products, fine chemicals as well as oil and gas. As a reliable partner BASF creates chemistry to help its customers in virtually all industries to be more successful. With its high-value products and intelligent solutions, BASF plays an important role in finding answers to global challenges such as climate protection, energy efficiency, nutrition and mobility. BASF posted sales of more than €50 billion in 2009 and had approximately 105,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN).

For more information, please click here

Contacts:
Dr. Manuela Kummeter
Communications & Government Relations BASF Group
Corporate Media Relations BASF Group
Phone: +49 621 60-41040
Fax: +49 621 60-92693

Postal Address: BASF SE, ZOA/CM - C100, 67056 Ludwigshafen, Germany

Copyright © BASF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project