Home > Press > Leti Demonstrates the Integration of CMOS-Compatible Plasmonic Optical Waveguides with Silicon Photonic Devices
![]() |
Abstract:
Copper Waveguides Offer Potential for Developing Smaller, More Efficient, High-Performance Photonic Components
CEA-Leti, a leading European research and development institute in the field of silicon photonics technology, today announced that it has demonstrated the efficient integration of silicon photonic devices with fully complementary metal-oxide semiconductor (CMOS)-compatible plasmonic optical waveguides.
This new capability sets the stage for the fabrication of smaller, faster and more efficient opto-electronic interfaces, which could ultimately allow the development of significantly higher-performance sensors, computer chips and other electronic components.
Waveguides, including optical fibers, are used to transmit signals and power in a variety of radio and optical communications uses. Leti's new devices channel light through a narrow silicon waveguide placed in close proximity to a metal waveguide, causing the light to excite small, high-frequency electromagnetic waves, known as surface plasmons, in the metallic structures. The resulting devices can convert optical signals in the 1.5 micrometers (µm) communications band into plasmonic electron waves, and convert the plasmonic waves back into optical signals.
Leti's pioneering combination of extremely small plasmonic-optical interfaces that connect to standard optical fibers provides high coupling efficiencies (up to 70 percent) over a wide spectral range. And unlike previous devices that have relied on metal waveguides made from gold, Leti's metal waveguides are fabricated with copper, allowing them to be easily integrated into standard CMOS chip manufacturing processes.
"This demonstration of CMOS-compatible plasmonic-optical technology is a major milestone in the emerging field of metal-oxide-semiconductor photonics," said Laurent Fulbert, Photonics Programs Manager at Leti. "By concentrating light into very small modes, we can provide an efficient optical interface between the macroscopic world of optical fibers and the nano-scale world of transistors and molecular electronic devices."
The plasmonic-optical devices were designed and fabricated by Leti, which collaborated with France's Université de Technologie de Troyes (UTT) for additional near-field scanning optical microscope testing and characterization. The project results were presented earlier this month at the Group Four Photonics 2010 show in Beijing, and published in Nano Letters, a journal of the American Chemical Society.
####
About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m” state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families.
For more information, please click here
Contacts:
Press Contacts:
CEA-Leti
Thierry Bosc
+33 4 38 78 31 95
Agency
Amélie Ravier
+33 1 58 18 59 30
Copyright © CEA-Leti
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |