Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NSF Awards $109M to Cornell

Cornell employees James Sears and Don Heath work in the Newman Laboratory cleanroom assembling the superconducting radio-frequency cavity accelerating structure for the ERL injector prototype.
Cornell employees James Sears and Don Heath work in the Newman Laboratory cleanroom assembling the superconducting radio-frequency cavity accelerating structure for the ERL injector prototype.

Abstract:
$109 million NSF award funds X-ray science, research and development for revolutionary new X-ray source

By Anne Ju

NSF Awards $109M to Cornell

Ithaca, NY | Posted on October 1st, 2010

In a major boost for X-ray science and accelerator physics, the National Science Foundation (NSF) has committed about $109 million to Cornell's continued operation of an X-ray synchrotron facility, as well as to develop a new kind of X-ray source that promises to revolutionize the field.

The Cornell High Energy Synchrotron Source (CHESS), one of five national facilities for synchrotron X-ray research in the U.S., has received $77 million from the NSF to continue operations through at least March 2014. This complements an additional $7 million from the National Institutes of Health to provide support for biomedical research at CHESS. In addition, the NSF has also awarded Cornell $32 million toward research and development of a next-generation X-ray source technology, called an Energy Recovery Linac (ERL).

CHESS produces intense X-ray beams that serve an international community of researchers from academia, government and industry, in such fields as medicine, materials science, physics, engineering, chemistry and the humanities. The Cornell synchrotron activity is also among the world's most prolific training centers of accelerator- and X-ray-based scientists.

Facilities like CHESS provide biomedical researchers with detailed, atom-by-atom images of disease-causing viruses and important proteins in the human body. In the past seven years, two Nobel Prizes in chemistry have resulted from work done by CHESS users. CHESS is also used by scientists and students studying, for example, ways to make airplane wings that don't fatigue and crack, or to create new materials for fuel cells that will let automobiles run efficiently with minimal pollution.

"One of the most important functions our lab plays is to train imaginative students who become the science and engineering leaders of tomorrow," said CHESS Director Sol Gruner. "Because CHESS is embedded in the central Cornell campus, it is deeply integrated into the educational activities of the university. This is the reason why so many graduates from the Cornell synchrotron center have gone on to build and manage many accelerator-based scientific facilities across the globe."

X-ray and accelerator-based research at Cornell has been responsible for many seminal developments in the field. Continuing this tradition, the NSF has also awarded the $32 million to research and develop ERL technology.

Since about 2000, Cornell has been planning a $500 million ERL upgrade to CHESS, which would be the university's most ambitious facility upgrade to date. Cornell's ERL would be the most capable X-ray source in the world, with steady-state beams 1,000 times brighter than any in existence. Although Cornell must compete with other institutions for the right to build the ERL upgrade, the $32 million in research and development funds provide a solid foundation for the technology.

"The money for research and development is a major vote of confidence from the federal government for Cornell's leadership in accelerator physics and X-ray technology," Gruner said. "The expertise at Cornell puts us in a unique position to do this kind of work."

The $32 million will help develop an ultra-bright electron injector and linear accelerator, both based on superconducting technology. The injector creates tightly packed bunches of electrons and feeds them into the accelerator. The Cornell team also plans to prototype undulators, which are magnetic devices placed around the accelerator that produce the X-rays, as well as highly sophisticated X-ray detectors.

An ERL X-ray source would be a revolutionary tool for biology, medicine, materials and many basic science areas. "Much of modern science deals with trying to get down to the nanometer scale -- to look at single molecules and atoms," said Ernest Fontes, senior research associate and associate director of CHESS. "In order to get that small, you need a precise, ultra-bright X-ray source, such as would emerge from an ERL."

The scientific applications of X-rays have been growing steadily and form the largest activity at the Cornell facility. The new award completes a transition to a new primary steward, the NSF Division of Materials Research, which is concerned with X-ray applications. In the past, the NSF Physics Division, concerned with elementary particle physics studies, was the primary steward division.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project