Home > Press > Novel Chemistry Amplifies Ability of Nanoparticles
Abstract:
Investigators at the Massachusetts General Hospital and Harvard Medical School has developed a chemical methodology that can be used to attach virtually any antibody to a nanoparticle without the need to optimize the reaction conditions.
One of the most promising characteristics of nanoparticles as diagnostic agents is the ability to attach to the nanoparticles surface any of a wide variety of targeting molecules that can increase the distinction between malignant and healthy cells, making it easier to spot small numbers of diseased cells within a sea of healthy cells. However, the development of such targeted nanoparticles has been hampered by the need to optimize the chemical methods used to link the targeting molecule to the nanoparticle for each unique combination of the two.
Now, a team of investigators at the Massachusetts General Hospital and Harvard Medical School has developed a chemical methodology that can be used to attach virtually any antibody to a nanoparticle without the need to optimize the reaction conditions. This team, led by Ralph Weissleder, who is a co-principal investigator of the MIT-Harvard Center of Cancer Nanotechnology Excellence, published their findings in the journal Nature Nanotechnology.
Using a nanoparticle that is both magnetic and fluorescent and three different monoclonal antibodies known to target tumor-associated surface molecules, Dr. Weissleder and his collaborators applied what they call "bioorthogonal chemistry" to create nanoparticles that bind strongly to the targeted tumor types. They showed that binding took place with the proper cells using a novel miniaturized magnetic resonance detector system developed by the Weissleder team for use in point-of-care applications.
The investigators then compared the binding ability of their targeted nanoparticles with those prepared using one of the now-standard approaches for linking antibodies to nanoparticles. The new process created nanoparticles that stuck to their targeted cells with 10 to 15 times the avidity of those nanoparticles prepared with standard methods. In addition to improving the sensitivity of tumor cell detection using targeted nanoparticles, this new chemistry could also improve strategies for developing targeted drug delivery applications.
This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Bioorthogonal chemistry amplifies nanoparticle binding and enhances sensitivity of cell detection." An abstract of this paper is available at the journal's Web site.
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||