Home > Press > mPhase Technologies to Speak at Red Stone Arsenal
![]() |
Abstract:
mPhase Technologies, Inc. (OTCBB: XDSL) today announced that it has been invited to speak at High Efficiency Energy Conversion, Energy Management, and Low Power Systems for Aerospace/Military Electronics Workshop, sponsored by the US Department of Defense and scheduled to be held Sept. 14-15, 2010, at Red Stone Arsenal, Huntsville, Alabama. At the workshop, mPhase will describe the advantages of Smart NanoBattery technology for low power defense-based applications.
The purpose of the energy management workshop is to bring together the technical community of DoD organizations, small business and defense contractors to discuss potential technologies that may be suited for improving the power efficiency of electronics, embedded systems and power sources, especially as it relates to improving the design of light weight portable electronic devices. A goal of the workshop is to facilitate the exchange of ideas and potential collaboration efforts for companies that have expertise in these areas and to help transition the technology past the Phase II prototyping stage.
"This workshop is a very good forum for exposing the advantages and unique capabilities of the Smart NanoBattery for forward-looking hardware and software designs involving improved power efficiencies for critical systems," said Ron Durando, president and CEO of mPhase Technologies. "We are looking forward to working with the DoD organizations and defense contractors to potentially drive our technology into leading-edge military applications."
The development of the Smart NanoBattery has been undertaken with funding support from a Phase II STTR Army award.
Forward-Looking Statements
As a cautionary note to investors, certain matters discussed in this press release may be forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Such matters involve risks and uncertainties that may cause actual results to differ materially, including the following: changes in economic conditions; general competitive factors; acceptance of the Company's products in the market; the Company's success in technology and product development; the Company's ability to execute its business model and strategic plans; and all the risks and related information described from time to time in the Company's SEC filings, including the financial statements and related information contained in the Company's SEC Filing. mPhase assumes no obligation to update the information in this release.
####
About mPhase Technologies
mPhase Technologies is introducing a revolutionary Smart Surface technology enabled by breakthroughs in nanotechnology, MEMS processing and microfluidics. Our Smart Surface technology has potential applications within drug delivery systems, lab-on-a-chip analytic systems, self-cleaning systems, liquid and chemical sensor systems, and filtration systems. mPhase has pioneered its first Smart Surface enabled product, the mPhase Smart NanoBattery.
In addition to the Smart Surface technology, mPhase recently introduced its first product, the mPower Emergency Illuminator, an award-winning product designed by Porsche Design Studio and sold via the mPower website: www.mpowertech.com.
For more information, please click here
Contacts:
Michael Meek, CPhT
mPhase Technologies, Inc.
Investor Relations
301-718-1635
Copyright © mPhase Technologies
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Aerospace/Space
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Events/Classes
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |