Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Closer Look at Ring Opening

Anfractuous paths: Electron diffraction reveals the involvement of multiple structures in the complex photochemistry of photoswitchable nitro-substituted 1,3,3-trimethylindolinobenzospiropyran. The spiropyran-to-merocyanine isomerization due to ring opening produces primarily the cis–trans–cis structure (see picture; red O, blue N, yellow C), while competing nonradiative pathways lead to other structures, namely the closed forms in their triplet and singlet ground states.
Anfractuous paths: Electron diffraction reveals the involvement of multiple structures in the complex photochemistry of photoswitchable nitro-substituted 1,3,3-trimethylindolinobenzospiropyran. The spiropyran-to-merocyanine isomerization due to ring opening produces primarily the cis–trans–cis structure (see picture; red O, blue N, yellow C), while competing nonradiative pathways lead to other structures, namely the closed forms in their triplet and singlet ground states.

Abstract:
Electron diffraction studies of photoswitchable molecules

A Closer Look at Ring Opening

Weinheim, Germany | Posted on September 9th, 2010

We use a switch to turn lights off and on; however, light can also act as a switch itself, for example when molecules change their structure upon irradiation. Photoswitchable molecules are potentially interesting for use in holographic data storage, as molecular switches for nanomachines, or for switching biological functions in the biosciences. In order to tailor these molecules for different applications, it is necessary to have a comprehensive understanding of the underlying reaction mechanisms. A team led by Nobel Laureate Ahmed Zewail and members of his group at Caltech in Pasadena (California, USA) now reports in the journal Angewandte Chemie about their use of electron diffraction studies to observe a photoswitchable molecule in the process of "switching".

The molecule under examination was a complex ring system that switches between a closed form and an open form upon irradiation with UV light. In the closed spiropyran form it consists of two planar fused ring systems that form two orthogonal planes. When irradiated, a bond is broken to open a single ring. In this open merocyanin form, both units of the molecule are only connected through a bridge made by three bonds. Each of these bonds can theoretically have one of two spatial arrangements, which are designated as cis and trans. Furthermore, this molecule contains a nitro group (-NO2), which allows it to enter into two different electronic states—singlet or triplet—when excited by light.

Which form does it choose? This is what the researches wished to determine in order to study the reaction mechanism. To do this, they used a method known as laser-desorption electron diffraction. In this technique, a sample is heated and vaporized by laser so rapidly that the sample molecules do not have time to decompose. The isolated molecules are then bombarded with electrons. The electrons are diffracted by the atomic nuclei of the molecule, which results in a characteristic diffraction pattern. The scientists recorded diffraction patterns 100 nanoseconds before and after excitation with UV.

By using theoretical model calculations, the researchers were able to interpret these diffraction patterns. The result: "Ring opening leads primarily to the cis-trans-cis structure," according to Zewail, "while competing, non-irradiative paths lead to other structures, such as the closed forms in their triplet and singlet ground states."

"Our results demonstrate the enormous capability of the electron diffraction technique to solve such complex, nanometer-scale structures with minimal symmetry," says Zewail.


Author: Ahmed H. Zewail, California Institute of Technology, Pasadena (USA), www.zewail.caltech.edu/contact/index.html

Title: Direct Determination of Conformations of Photoswitchable Molecules by Laser Desorption-Electron Diffraction

Angewandte Chemie International Edition 2010, 49, No. 37, 6524-6527, Permalink to the article: dx.doi.org/10.1002/anie.201003583

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project