Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multifunctional Nanoparticle Enables New Type of Biological Imaging

Abstract:
Spotting a single cancerous cell that has broken free from a tumor and is traveling through the bloodstream to colonize a new organ might seem like finding a needle in a haystack. But a new imaging technique from the University of Washington is a first step toward making this possible.

Multifunctional Nanoparticle Enables New Type of Biological Imaging

Bethesda, MD | Posted on August 18th, 2010

A research team headed by Xiaohu Gao has developed a multifunctional nanoparticle that eliminates the background noise, enabling a more precise form of medical imaging — essentially erasing the haystack, so the needle shines through. A successful demonstration with photoacoustic imaging was reported in the journal Nature Communications.

Nanoparticles are promising contrast agents for ultrasensitive medical imaging. But in all techniques that do not use radioactive tracers, the surrounding tissues tend to overwhelm weak signals, preventing researchers from detecting just one or a few cells. "Although the tissues are not nearly as effective at generating a signal as the contrast agent, the quantity of the tissue is much greater than the quantity of the contrast agent and so the background signal is very high," said Dr. Gao.

The newly presented nanoparticle solves this problem by combining two properties to create an image that is different from what any existing technique could have produced. The new particle combines magnetic properties and photoacoustic imaging to erase the background noise. Researchers used a pulsing magnetic field to shake the nanoparticles by their magnetic cores. Then they took a photoacoustic image and used image processing techniques to remove everything except the vibrating pixels.

Dr. Gao compares the new technique to "Tourist Remover" photo editing software that allows a photographer to delete other people by combining several photos of the same scene and keeping only the parts of the image that aren't moving. "We are using a very similar strategy," Dr. Gao said. "Instead of keeping the stationary parts, we only keep the moving part." As a result, experiments with synthetic tissue showed the technique can almost completely suppress a strong background signal. Future work will try to duplicate the results in lab animals, Dr. Gao said.

The 30-nanometer particle consists of an iron-oxide magnetic core with a thin gold shell that surrounds but does not touch the center. The gold shell is used to absorb infrared light, and could also be used for optical imaging, delivering heat therapy, or attaching a biomolecule that would grab on to specific cells.

This work is detailed in a paper titled, "Multifunctional nanoparticles as coupled contrast agents." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project