Home > Press > High definition diagnostic ultrasonics on the nanoscale
Abstract:
Scientists and Engineers at The University of Nottingham have built the world's smallest ultrasonic transducers capable of generating and detecting ultrasound.
These revolutionary transducers which are orders of magnitude smaller than current systems — are so tiny that up to 500 of the smallest ones could be placed across the width of one human hair.
While at an early stage these devices offer a myriad of possibilities for imaging and measuring at scales a thousand times smaller than conventional ultrasonics. They can be made so small they could be placed inside cells to perform intracellular ultrasonics. They can produce ultrasound of such a high frequency that its wavelength is smaller than that of visible light. Theoretically they make it possible for ultrasonic images to take finer pictures than the most powerful optical microscopes.
The work, by the Applied Optics Group in the Division of Electrical Systems and Optics has been deemed so potentially innovative that last year it was awarded a £850,000 five year Platform Grant by the Engineering and Physical Sciences Research Council (EPSRC) to develop advanced ultrasonic techniques. The team has also been supported by additional funding of £350,000 from an EPSRC grant to underpin aerospace research.
Matt Clark, of the Applied Optics Group, said: "With the rise of nanotechnology you need more powerful diagnostic tools, especially ones that can operate non-destructively and ones which can be used to access the mechanical and chemical properties of the samples at this scale. These new transducers are hugely exciting and bring the power of ultrasonics to the nanoscale."
The ultrasonic transducers consist of sandwich or shell like structures carefully engineered to possess both optical and ultrasonic resonances. When they are hit by a pulse of laser light they are set ringing at high frequency which launches ultrasonic waves into the sample. When they are excited by ultrasound the transducers are very slightly deformed and this changes their optical resonances which are detected by a laser.
The devices can be constructed either by micro/nano lithography techniques similar to those used for microchips or by molecular self assembly where the transducers are constructed chemically.
Perhaps the most familiar application of ultrasonics is medical imaging but it is also widely used in engineering applications and for chemical sensing. These tiny transducers open up the possibility of using these techniques on the smallest scales, for instance inside cells and on nano-engineered components.
Dr Clark said: "Imagine imaging inside cells in the same way that ultrasonic imaging is performed inside bodies. Theoretically we could get higher resolution with the nano-ultrasonics than you can with optical microscopes and the contrast would be very interesting. In addition the transducers can be made into highly sensitive chemical sensors — ultrasonics SAW sensors are used on the normal scale for electronic noses — this would allow you to distribute chemical sensors in tissue or in paint — so you could make paint with chemical sensors to detect corrosion or explosives in it."
The research was performed between the Division of Electrical Systems and Optics in the Faculty of Engineering and the School of Pharmacy.
####
For more information, please click here
Contacts:
Lindsay Brooke
Media Relations Manager
+44 (0)115 951 5751
Copyright © University of Nottingham
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||