Home > News > A Cheap, Fast Way to Write Nanoscale Patterns
August 7th, 2010
A Cheap, Fast Way to Write Nanoscale Patterns
Abstract:
Today's microchips, communications gear, and medical diagnostics are typically made by writing nanoscale patterns over large areas of silicon wafers and other high-tech materials. The process is either extremely expensive or painfully slow, however. Now scientists have come up with a hybrid approach that could offer researchers a way to craft prototype nanoscale devices quickly and cheaply, speeding up the already blistering pace of developments in the field.
Now a team led by Chad Mirkin, a chemist at Northwestern University in Evanston, Illinois, has combined near-field techniques with conventional photolithography to pattern large areas of silicon and other materials without an expensive fabrication facility. Mirkin's team previously pioneered a technique called polymer pen lithography, creating tiny plastic tips shaped like inverted pyramids, which use ink to write features onto a surface. Mirkin's new technique, called beam-pen lithography, uses similar tips made from a transparent polymer. The researchers coat all but the tips of their pyramids with a thin layer of gold. When they then shine light on the base of an array of pyramids, it passes through the polymer and out the tips onto a photosensitive layer atop a silicon surface.
Source:
sciencemag.org
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |