Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > X-Ray Vision: Seeing Plastic Mixtures Inside and Out

Abstract:
Simultaneous surface and bulk imaging of polymer blends with X-ray spectromicroscopy

X-Ray Vision: Seeing Plastic Mixtures Inside and Out

UK | Posted on July 27th, 2010

Two scientists working in Europe have paved the way for improved plastic electronics by devising a technique that can be used to take images of plastic mixtures on the nanoscale simultaneously in the body of the material and at the surface.

Low-cost plastic solar cells, brighter displays, and a longer battery life for mobile phones and e-readers are some foreseeable outcomes, as manufactures could use the method to better understand the materials they use.

Chris McNeill of the University of Cambridge (UK) and Ben Watts of the Paul Scherrer Institute (Switzerland) are the researchers behind the breakthrough published in Macromolecular Rapid Communications. They shine synchrotron radiation on polymer mixtures to take sophisticated multiwavelength X-ray images of the bulk of the polymer mixture, and at the same time collect the electrons formed by the interaction of the X-rays with the surface of the sample. The second image can be compared directly with the first to see the differences in distribution of the components in the body of the film and on the surface.

The surface-imaging part works because any photoelectrons formed in the bulk of the material are absorbed before they reach the surface, and hence only those formed at the surface are free to leave the material and create a signal, which is "small, but measurable".

Watts explains that "the X-rays that are shone on the sample are "tuned to the carbon atom", causing the polymers, which are mostly carbon, to "resonate in a way that makes them absorb much more of the light at particular wavelengths than one would otherwise expect. This resonance between the light and atom is also very sensitive to the way in which the atoms are linked together…resulting in [high] contrast between polymer materials that otherwise appear nearly identical." An example is shown in the picture.

"At Cambridge we are interested in the use of semiconducting polymers for applications in solar cells, light-emitting diodes (LEDs), and transistors," says McNeill. "As is the case in other areas of polymer science, the blending of two semiconducting polymers sometimes enables you to achieve properties or function that cannot be achieved with the one polymer alone. The efficiency of polymer solar cells and LEDs are greatly improved through blending, and we are particularly interested in how film microstructure affects device performance. Being able to image not only bulk structure but surface structure as well is critical, as it is the surfaces that connect to the electrodes (and the outside world) so having a technique that helps us to understand how surface and bulk structures are connected was highly desirable.

Both scientists studied in same group in Australia before going separate ways; McNeill to pursue his interest in organic semiconductors, and Watts his in synchrotron-based characterization. Their expertise in complementary areas meant they were abreast of current issues in the field of plastic electronics while being aware of new opportunities for advanced materials characterization.

McNeill: "In a sense all the components required for such an experiment have been available for a while, and it required a realization of this opportunity and the assembly of the components. We acknowledge Rainer Fink of the Universität Erlangen-Nürnberg for first demonstrating the feasibility of the experiment…There were some technical challenges in having to suppress the photoelectrons being emitted from other parts of the experiment in order to detect only those coming from the sample, but these were overcome mostly through Ben's dogged persistence and thoroughness."

They see the work as benefiting not just those working with semiconducting polymers, which are necessary for plastic electronics, but all types of thin-film polymer blends. There may also be applications in other organic, but non-polymer, mixtures or other materials where "characterization of surface and bulk is crucial."

The next steps involve extending the analysis of surface structure to "a full quantitative analysis", according to McNeill, "This would require imaging at multiple X-ray photon energies." But the longer exposure times requires could damage the surfaces being studied. "We are also applying our technique to the study of polycrystalline semiconducting polymer films that will provide insight into the interplay between film microstructure and charge transport in these devices."

Macromol. Rapid Commun. 2010, DOI: 10.1002/marc.201000269

This paper is available online at:

www.materialsviews.com/details/news/761091/XRay_Vision_Seeing_Plastic_Mixtures_Inside_and_Out.html

####

Contacts:
Dr. Christopher McNeill
Room 28 Kapitsa Building,
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge CB3 0HE.
Tel: +44 (0)1223 337287

Copyright © Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project